

Upper campus Housing Project Nicole Hazy Structural Advisor: Dr Hanagan

Table of Contents

AbstractI
Table of Contents2
Executive Summary
Project Background4
Existing Conditions
Problem Statement
Proposed Solution
Depth Study
Two-Way Design
Column Design
Foundations
One-Way Design20
Lateral Analysis21
Breadth Study
Thermo26
Construction Management29
Summary and Conclusions
Acknowledgements
References
Appendix

Upper campus housing project Nicole Hazy Structural Advisor: Dr Hanagan

Executive Summary

The following report is an examination into the design and analysis of an alternate structural system for the Upper Campus Housing Project. This building is a ten-story dormitory located on the campus of the University of Pittsburgh. The existing system is a one-way hollow-core concrete plank system with concrete masonry bearing and shear walls. The alternate design is a two-way flat plate system.

The two-way system design for the Upper Campus Housing Project will affect other buildings systems. The columns for this system were placed in areas to be used for HVAC. Therefore, the HVAC equipment will need to be placed in another location. The lateral system for this building is also greatly affected. The existing structure has reinforced concrete masonry bearing and shear walls, which are placed as all exterior walls and in the center of the structure. The alternate lateral system will be reinforced concrete shear walls placed only at various places along the exterior of the building.

Another system that will be affected by the alternate design is the exterior envelope. The shear walls for the original system make up the exterior for the building. In the alternate system, a light gauge metal stud curtain wall with a brick façade will be used.

The two-way design will allow for this building to be developed into another type of structure in the future if needed because of the flexibility of the floor plan and the ability to carry higher live loads. However, the schedule and the cost of the two-way system are higher than that of the one-way system. Therefore, the original system is a better design for this structure.

Project Background

The University of Pittsburgh is currently constructing a dormitory facility on its upper campus. This building is approximately 161,600sf and 9 stories above grade plus one ground level. The Upper Campus Housing Project will house

approximately 512 students. It is located on Stadium Drive, not far from The Peterson Events Center. The main entrance to the building is on the South side. Here, a large staircase leads into the Lobby/Café area. The building façade consists

of brick wall containing windows of tempered insulated spandrel and vision glass. The brick façade consists of different shades of light brown, complimenting the

surrounding structures.

Construction on the Upper Campus Housing Project began in May of 2005 and is expected to end in July of 2006. The overall cost of the dormitory building is approximately 33 million dollars.

Project Team

Owner: The University of Pittsburgh Construction Manager: P.J. Dick Incorporated Architect: Perkins Eastman Architects PC Civil/Site/Landscape Engineers: The Gateway Engineers, Inc. Structural Engineer: Atlantic Engineering Services MEP Engineer: Elwood S. Tower Corporation

Building Codes

International Building Code ASTM ACI 318 (Requirements for Structural Concrete) ACI 530 (Requirements for Masonry Structures) AISC (Specifications for Structural Steel Buildings) ASCE7-02 (Lateral and Loading Code)

Existing Conditions

Structural

The existing structural system for the Upper Campus Housing Project is one-way 8" hollow-core concrete plank plus a 2 1/2" topping with reinforced masonry bearing walls. The plank will be filled in solid where needed. Shown below is a typical framing layout for the existing system.

Framing Information							
Floor	Typical Framing	Typical Span					
First	8" PC Plank + 2 1/2" Topping	24'-1 7/8" to 29'-4"					
Second-Eight	24'-1 7/8" to 29'-4"						
Ninth	8" PC Plank + 2 1/2" Topping	24'-1 7/8" to 29'-4"					
	8" PC Plank w/o Topping	24'-1 7/8" to 29'-4"					
	HSS6x6x3/8 Galv. Vert. Tube	Roof Column					
Roof	HSS6x6x1/4	10'					
	Galv. 3 1/2" Dia. Std. Pipe	Roof Column					
	Galv. W10x22	5' to 8'-7"					

The hollow-core plank for this building is designed with a 15psf load added for topped members, a 25psf superimposed dead load, and the required live load.

There are also five steel columns in this building (IA, 2F, 2J, 3B, 4H). They are all HSS6.625x0.500. Two of these

columns (2F and 2J) only span from the ground floor to the first floor (L= 12^{-6}). Two other columns (1A and 4H) span all the way to the ninth floor. Also, the last of the five columns (3B) spans the entire height of the building. Column 1A sits on a W8x31 transfer girder, which transfers the load from the column into the foundation. Columns 3B and 4H sit on concrete piers at the second floor level.

Also in this building there are four 20" dia. concrete piers located at column lines 3C, 3D, 3E, 3G. Each of these concrete piers span from SOG to the second floor level.

Minimum Design Compression Strength (f'c) at 28 days for Reinforced Concrete: Foundations 3000psi Walls 5000psi Slab on Grade 4000psi Interior Slabs 4000psi Exterior Slabs 4000psi Structural Slab and Elevated Slab (Ext.) 5000psi Structural Slab and Elevated Slab (Int.) 4000psi

Foundation System

The foundation system of this building begins with 7 I -drilled concrete caissons. As stated above, each concrete caisson has a concrete strength (f'c) = 3000psi. The diameters of these caissons range from 36"-66". All caissons are designed to bear on either limestone/sandstone bedrock or shale/sandstone bedrock per geotechnical report dated December of 2004.

The foundation system also includes 78 concrete grade beams, which sit on the concrete caissons. The concrete strength of this concrete is also specified at 3000psi. All grade beams have a width = 24", except for GB 67 which has a width = 30". The depths of the grade beams range from 36"-60". The concrete masonry walls then sit directly on the grade beams. At each connection between a concrete masonry wall and a grade beam there is a key and waterstop. The key is provided to prevent sliding between members. Existing foundation details are located in the Appendix of this report on page 35.

Mechanical

Pitt Dormitory building is supplied by a CAV system. This system includes three types of units. The first unit (AHU-1) is a 5400cfm unit. This building also has rooftop units (RTU-1). These rooftop units are rated at 24,250cfm. In this building each resident director is supplied with his or her own electric furnace. Each of these furnaces (AHU-2) is 755cfm. AHU-2's have DX cooling and an electric heating coil.

Lighting/Electrical

There are many different types of lighting used in this building. The first floor lobby has indirect/direct, I 20V, I 60W pendant mounted lights. In other lounge and lobby areas of the building there are fluorescent downlights. In the dorm rooms there are ceiling mounted polycarbonate bowl fixtures. Other important areas to look at are the corridors. In the corridors there are recessed static fluorescent troffers with prismatic lenses.

This building's electrical system is supplied by 57 208Y/120V, 3PH, 4W panelboards. These panelboards are located on floors ground-ninth. There are also 2 480Y/277V, 3PH, 4W panelboards (1 for the roof and 1 for the penthouse).

Plumbing

The Upper Campus Housing Project's domestic water supply is maintained by a domestic water booster system. 752gal domestic hot water tanks power this system. Located in the mechanical room is a 2" Diaphragm Compression Tank

with a capacity of 21 I gal. There are also 2 140-degree water heaters located there. Each resident director room is supplied with a 3/4" Diaphragm Compression Tank with a capacity of 2gal.

Fire Protection

This building is protected by a number of different sprinkler types. The hallways and common areas make use of the concealed pendent sprinklers. The corridor outside of the service areas has semi-recessed pendent sprinklers. Service areas are equipped with upright sprinklers. Dorm rooms have both concealed sidewall sprinklers and concealed pendent sprinklers. A 6" combined standpipe/sprinkler riser is located in the stairwells. The fire department connection and check valve with ball drip are located on the southeast side of the building (outside of the tenant locker room).

Upper Campus Housing Project Nicole Hazy Structural Advisor: Dr Hanagan

Problem Statement

Due to the nature of a one-way plank and bearing wall system, there is no flexibility to the architectural floor plan. For example, a hallway exists to one side of the center masonry wall running along approximately the centerline of the structure. This hallway must be designed at 100psf. The spaces to either side of this hallway are dorm rooms, which are designed to withstand only 40psf. Because of the nature of the plank, the main wall could not be moved if this building is ever converted for another use. The most common conversion that would be needed is office space. With office space loading equaling a minimum of 50psf, this would not be a possibility. On an ever-changing college campus, it is impossible to tell the university's needs for the structure down the road. Below is a typical architectural layout for the Upper Campus Housing Project.

Proposed Solution

The proposed solution to the above-mentioned design setback is a two-way system. A two-way flat-plate system was designed for the Upper Campus Housing Project to allow for higher floor loads. The use of this system will also allow for less shear walls, none of which will be located in the interior bays of the structure. Because the center shear wall can be removed, a more flexible floor plan will be possible for the

future development of the structure. Shown to the right is a typical bay in the North/South direction of the building.

Designing the Upper Campus Housing Project as a two-way system will not only affect the structural system, but will also affect the lateral system and the exterior envelope. As mentioned above

the lateral system will be 10" concrete shear walls placed only at the exterior and in the elevator shafts and stairs of the building. The exterior building envelope will become a light gauge metal stud curtain wall.

Depth Study

The two-way flat-plate system for the Upper Campus Housing Project was designed using ADOSS. The flat-plate system will be 10" with no drop panels of normal weight concrete with strength of 4000psi and a steel strength of 60,000psi. The original depth for the system was determined using ACI 318 Table 9.5(c) an exterior panel without edge beams or drop panels, $t_{min} = \hbar / 30 = (27ft - 2ft)(12in/ft)/30 = 10$ ". ACI 318 also specifies the minimum reinforcement in the slab as 0.0018Ag. Therefore, $As_{min} = 0.0018(10")(12") = 0.216 in^2/ft (#5 at 12")$. The columns for this system were designed by using interaction diagrams with a given moment and axial force. A starting size for the columns came from CRSI Handbook for shear requirements. This size is 26" x 26". The minimum reinforcement from ACI 10.16.8.6 for the columns is equal to 0.01Ag. Therefore, Asmin = 0.01(26")(26") = 6.76in² which is 12-#7. There is also a maximum reinforcement ratio for columns of 0.08Ag.

Loading

The gravity loads that were used to design the two-way flat-plate system were: dead, live, snow and roof live. For simplification of the design, the lateral loads were assumed to be taken by the shear walls.

Gravity Loads				
Dead	*Computed by ADOSS			
Superimposed Dead	25psf			
Live	80psf			
Roof/Snow	30psf			

Two-Way Slab Design

The following is part of the ADOSS output for a typical bay in the North/South direction. The program will design the reinforcement, but for the purpose of this design the following information was used to make a more consistent design based on 12" segments of slab.

COLUMN*1	PATT	'*LOCAT	CION *	TOTAL	*	COLUMN	STRIP	*	MIDDLE	STRIP
NUMBER*	NO.	*@COL	FACE*	DESIGN	*	AREA	WIDTH	*	AREA	WIDTH
			*	(ft-k)	*	(sq.in)) (ft)	*	(sq.in)	(ft)
1	4		R	229.4		6.15	13.5		2.92	13.5
2	4	L	-	-485.8		10.22	13.0		3.24	14.0
3	4	L	-	-197.2		5.26	13.0		3.02	14.0

SPAN *1 NUMBER*	PATT* NO.*	FROM LEFT* (ft) *	TOTAL DESIGN (ft-k)	* * *	COLUMN AREA (sq.in)	STRIP WIDTH) (ft)	* * *	MIDDLE AREA (sq.in)	STRIP WIDTH (ft)
2 3	4 4	12.8 14.9	333.4 304.4		5.42 4.94	13.5 13.0		3.57 3.25	13.5 14.0

An example calculation for the reinforcement is as follows for the column strip negative reinforcement at column #1:

 $As = 6.15 \ln^2/13.5 ft = 0.456 \ln 2/ft (\#7 at 12")$

This calculation was done for each column strip and middle strip. The reinforcement was then distributed evenly throughout each strip. Below is an example of the floor reinforcement layout. All floors and directions are located in the Appendix page 75.

Long and short bar extensions were completed by ADOSS which complies with ACI Figure 13.3.8.

The following design criterion was used in ADOSS to complete the design of the slabs:

Distance from reinforcement to tension face = 1.5" Minimum Bar Size = #4 Minimum Clear Bar Spacing = 6" 100% Column Fixity

Column Design

The columns for the Upper Campus Housing Project were designed using interaction diagrams from the Design of Concrete Structures textbook. Using an excel spreadsheet an axial force and moment on each column was determined. Interaction diagrams were then used to find a reinforcement ratio. Each axial force was computed using the tributary area of the column and floor gravity loads. The axial force and the moment were then put into the following equations to get a reinforcement ratio needed for each column.

$$Kn = \frac{Pu}{\phi f'c(Ag)} \qquad Rn = \frac{Mu}{\phi f'c(Ag)h}$$

The interaction diagram used for this design is located in the Appendix on page 90. The lateral ties for each column were designed based on the following spacing requirements: $16 \times diameter$ of the longitudinal bars (14"), 48 $\times diameter$ of the tie (48.375"), and the least dimension of the column (26"). Therefore, the lateral ties will be spaced at 14".

The following are design criteria for the design of the concrete columns for a two-way flat-plate system:

Minimum Concrete Cover = 1.5" Strength Reduction Factor = 0.65Lateral ties for <#10 bars = #3

Shown on the next page is the column schedule for the roof columns. Complete column schedules can be viewed in the Appendix page 91.

Upper Campus Housing Project Nicole Hazy Structural Advisor: Dr Hanagan

Colema	٨	P (1-)	Master	5aæ(∎×∎)	Rembr.	Тө
A-G	3715	7267G	241.7	ZG X ZG	12-#7	ୟ ହୋୟ '
A- G. B	13.6	2 59 20	366.Z	ZG X ZG	12-#7	13 Q 4'
8.3-Q	0	0	0	ZG X ZG	-	-
B-1	76	1 4400	246.7	ZG X ZG	12-#7	ମ୍ବରା 4'
B-2	250	63760	246.7	ZG X ZG	12-#7	ଟେହା 4'
B-3	406	77760	Z44.9	ZG X ZG	12-#7	R@14"
B-4	406	103 650	Z3 9.5	ZG X ZG	12-#7	ଟେଡ଼ା4'
B-6	406	103 650	Z44.9	ZG X ZG	12-#7	R@14"
B.G.G.B	-	60000	366.2	ZG X ZG	12-#7	ୟେହାୟ'
8.7-G	100	3 2266	3 4 4	ZG X ZG	12-#7	R@14"
8. D- O	0	0	0	ZG X ZG	-	-
C.3-G.Z	-	60000	366.Z	ZG X ZG	12-#7	ୟ ହାୟ
C.40.3	0	0	0	ZG X ZG	-	R@14"
G-1	76	14400	344.4	ZG X ZG	12-#7	ୟ ହାୟ ।
C-Z	രോ	1305.00	406D	ZG X ZG	12-#7	R@14"
C-3	702	13 4764	406D	ZG X ZG	12-#7	ଟେହା 4'
C-4	702	179712	406D	ZG X ZG	12-#7	R@14"
СБ	702	179712	406D	ZG X ZG	12-#7	ଟେଡ଼ା 4'
0.6	304	663.00	360.6	ZG X ZG	12-#7	R@14'
D-0.6	0	0	0	ZG X ZG	-	
다	0	0	0	ZG X ZG	-	-
62	176.6	33696	19 7.2	26 X 26	12-#7	R@14"
63	33 G	G4612	246.Z	ZG X ZG	12-#7	 ह@14'
64	33 G	DODIC	226.Z	ZG X ZG	12-#7	#3@ 4"
66	336	DODIG	26D.4	26 X 26	12-#7	
66	312	69904	19 T.Z	ZG X ZG	12-#7	ମେହା4
E B-G.D	D4	16120	366.Z	ZG X ZG	12-#7	ଟେହା 4'
F.G.D	90	17250	366D	ZG X ZG	12-#7	R @ 4'
F .7	G7.6	12960	246.7	ZG X ZG	12-#7	ଟେହା4'
RD.	406	77760	Z44.6	ZG X ZG	12-#7	R@14"
F .9	406	77760	244.9	ZG X ZG	12-#7	ୟ ହୋୟ
FIQ	240	40000	241.7	ZG X ZG	12-#7	R@14"
FII	206	6 47 20	246.7	ZG X ZG	12-#7	ମେହା4'
F.Z-12	0	0	0	26 X 26	-	-
F.B-GD	90	17250	366.Z	ZG X ZG	12-#7	ୟ ହାୟ
F.G.IZ	0	0	0	ZG X ZG	-	-
G-7	DI	16662	344.4	ZG X ZG	12-#7	ୟ ହାୟ
G-D	702	134764	406D	ZG X ZG	12-#7	R@14"
C-9	702	13 4764	406D	ZG X ZG	12-#7	ୟ ହାୟ
6-10	420	60640	406D	ZG X ZG	12-#7	ମେହା 4'
G-11	250	63760	344.4	ZG X ZG	12-#7	ମେହା 4'
G.I-GD	90	17250	366.Z	ZG X ZG	12-#7	ୟ ହାୟ
63-11.7	0	0	0	26 X 26	-	-
C.G.GD	D4	16120	366.Z	ZG X ZG	12-#7	ମେହା 4
H-11	0	0	0	ZG X ZG	-	-
H-II.B	0	0	0	ZG X ZG	-	-
F.2	204	39100	220.4	ZG X ZG	12-#7	ୟ ହାୟ
۲D	33 G	G4612	ZGB	ZG X ZG	12-07	ମେହା 4'
1-9	33 G	G4612	24G	ZG X ZG	12-#7	ୟ ହୋୟ
FIO	07.B	16720	220.4	ZG X ZG	12-#7	R@14

Foundations

The new foundation system for the Upper Campus Housing Project will be square footings under each column. The foundation shown below is the curtain wall down to the wall footing.

One-Way Design

The center section and the end sections of the floor plan (shown below) were designed as one-way systems. These one-way systems were also designed using ADOSS. They were checked with a manual calculation using a maximum moment of $wL^2/8$.

A beam was designed to span across the two columns circled below because the span was too high for the one-way system. The beam was designed by hand using a maximum moment of $wL^2/8$ also. It was designed as a T-beam for flexure and shear. The beam will have two rows of 5#8's for flexure and #3's for shear (1 at 2" and 18 at 9"). The beam calculations can be

found in the Appendix on page 101. Also shown below is a picture of the beam designed.

UPPER Campus Housing Project Nicole Hazy Structural Advisor: Dr Hanagan

Lateral Load Calculations (per ASCE7-02)

Seismic Use Group	I	Table 9.1.3
Site Classification	D	9.4.1.2.1
Ss	0.127	Figure 9.4.1.1a
S	0.054	Figure 9.4.1.1b
Fa	1.6	Table 9.4.1.2a
Fv	2.4	Table 9.4.1.2b
Seismic Design Category	A	
R	3	Table 9.5.2.2
	1.0	Table 9.1.4

Sms = FaSs = 1.6(0.127) = 0.203 Sm₁ = FvS₁ = 2.4(0.054) = 0.129 S_{DS} = (2/3)Sms = 0.135 S_{D1} = (2/3) Sm₁ = 0.086 T = Cthn^x = 0.02(100)^{0.75} = 0.632 Cs = S_{D9}/(R/I) = 0.045 Csmax = S_{D1}/(T(R/I)) = 0.045 Csmin = 0.044IS_{D5} = 0.006 V = CsW = 0.045(19875.5K) = 894.4K K = 1 + ((0.632-0.5)/2) = 1.07

Lateral Design

The lateral shear walls for this structure were designed using a stiffness analysis using a procedure described in Chapter 3 of the PCI Design Handbook. The forces on the building were distributed to each shear wall accordingly based on the stiffness of that wall. Each wall is 10" thick reinforced concrete. The seismic load case was used because it controls the design for these walls. The distribution of the seismic load to each floor is shown below. The corresponding wind loading diagram is located in the Appendix on page 37. Because there is an expansion joint located where the building angles, the lateral design can be complete assuming that the building works as two

separate halves. The reinforcement can be summarized as follows:

Shear Wall Design							
T, rac	Vertical		Vartical				
Туре	HOMZONIA	(First and Last 12")	Ventical				
Α	#10 at 12"	20-#10's	#5 at 12"				
В	#5 at 12"	20-#8's	#5 at 12"				

The location and the types of shear walls are shown on the page 24. A complete design of the shear walls is located in the Appendix page 103.

The detail to the right is a column with 12 longitudinal bars and the required placement of lateral ties. The detail shown below is an example of how the shear wall will connect to the foundation.

10°

Drift Check

$$\begin{split} &\Delta = (\text{Ph}^3/3\text{El}) + (2.78\text{Ph}/\text{AE}) \\ &\text{E} = 33(145\text{pcf})^{1.5}(4000\text{ps})^{0.5} = 3644\text{ks} \\ &\Delta_{\text{allowable}} = \text{H}/400 = 105.5\text{ft}(12\text{n}/\text{ft})/400 = 3.165\text{``} \end{split}$$

Deflection calculations were done for each wall using an Excel spreadsheet. These calculations can be viewed on the next page. All deflections are less than the allowable limit. It is also important to note that the deflection at the expansion joint was considered for the two halves of the building hitting each other and is OK.

Upper campus Housing Project Nicole Hazy Structural Advisor: Dr Hanagan

	Left							
Wall	Length	Area	I	Deflection				
Α	237	2370	11093378	0.01883				
В	237	2370	11093378	0.01883				
С	171.96	1720	4237416	0.03113				
D	60	600	180000	0.31538				
E	60	600	180000	0.31538				
F	216	2160	8398080	0.0216				
G	312	3120	25309440	0.01296				
Ι	336	3360	31610880	0.0118				
2	120	1200	1440000	0.06113				
3	120	1200	1440000	0.06113				

	Right							
Wall	Length	Area	l	Deflection				
A	336	2370	31610880	0.01612				
В	237	2370	11093378	0.01883				
С	237	1720	11093378	0.02437				
D	248.04	600	27 6978	0.06153				
1	216	3360	8398080	0.01586				
2	120	1200	1440000	0.06113				
3	120	1200	1440000	0.06113				

Breadth Study

Thermal Gradient

Because the new design for the Upper Campus Housing Project will allow for less shear walls, a new exterior envelope will need to be constructed to fill in the voids between the remaining shear walls. This new curtain wall will consist of an exterior brick façade with a light gauge metal stud back up. For each material in the new wall construction a U-Factor and an R-Value were calculated. The R-Value, the thermal resistance, and the U-Factor, the solar heat gain coefficient, values were taken from the Carrier's Hourly Analysis Program. The following chart is the output from that program:

📽 Wall Properties - [Default Wall Assembly]							
Wall Assembly <u>N</u> ame: Default W	'all Assemb	oly			•		
Outside Surface <u>C</u> olor: Light	-			<u>A</u> bsorptivity:	0.450		
Layers: Inside to Outside	Thickness in	Density Ib/ft ⁸	Specific Ht. BTU/Ib/F	R-Value hr-ft²-F/BTU	Weight Ib/ft²		
Inside surface resistance	0.000	0.0	0.00	0.68500	0.0		
Gypsum board 🗸 🗸	0.625	50.0	0.26	0.56000	2.6		
Air space 🗸	4.000	0.0	0.00	0.91000	0.0		
R-14 board insulation 💌	2.000	2.0	0.22	13.88889	0.3		
4-in face brick 🔹	4.000	125.0	0.22	0.43290	41.7		
Outside surface resistance	0.000	0.0	0.00	0.33300	0.0		
Totals	10.625			16.81	44.6		
		Ο.	/erall U-Value:	0.059	BTU/hr/ft²/F		
OK Cancel <u>H</u> elp							

From the information given from Carrier's Hourly Analysis Program the following Excel spreadsheet was constructed to calculate the change in temperature through each material:

Matanal	Thickness (in)	P. Value	Δ	Т
Malenai	THICKNESS (III)	N-Value	Winter	Summer
Outside Air SR	0.00	0.33	1.184	0.207
4" Brick Veneer	4.00	0.43	1.539	0.269
Air Space	1.00	0.91	3.235	0.565
Board Insulation	2.00	13.89	49.381	8.622
Vapor Barrier	0.01	0.00	0.000	0.000
Air Space	3.50	0.91	3.235	0.565
GWB	0.63	0.56	1.991	0.348
Inside Air	0.00	0.69	2.435	0.425
Totals	11.14	17.72		

The entire spreadsheet can be viewed in Appendix page 105.

The information used to construct the spreadsheet came from various places. The dew point temperatures came from a psych chart based on 50% Relative Humidity and 75F for summer and 70F for winter. Therefore, the dew point temperatures are 55F for summer and 51F for winter. The maximum allowable U-Factor was determined from the ASHRAE std. 90.1-2004 (Appendix page 106). This maximum U-Factor is equal to 0.064. The outdoor design conditions came from the ASHRAE Design Handbook of Fundamentals 1993. This handbook states that for Pittsburgh, PA the summer outdoor condition is 86F and the winter outdoor condition is 7F.

After the temperature changes were determined a wall section thermal gradient was constructed to determine where the water vapor would condense in each wall section.

In this case, the winter condition controls and tells us where to locate the vapor barrier in the wall section. Below is the thermal gradient for the winter condition. The summer condition can be viewed in the Appendix page 107.

WINTER WALL HEAT TRANSFER DIAGRAM

Construction Management Issues

Construction management issues, such as cost and duration, are important to be considered when decided which type of structure is best for each project. For the purposes of this report each system the cost and duration of a typical bay was computed using the ICE 2000 program. An example of a typical bay for the flat-plate system is shown below. The typical bay for the one-way plank system is similar. However, it has walls along each horizontal column line instead of columns. Because of the complexity of the flat-plate system the cost and duration are about double of that of the one-way. The one-way system allows for much easier construction, which therefore

allows for much less labor. The two-way system has much more labor because the slab and columns need to be formed and the reinforcement must be placed to the exact specifications of the engineer. A summary of the material and labor costs for each system is shown on the next page.

Cost and Duration System Summaries

Two-Way Flat-Plate System		
Material Cost	\$11,967	
Labor Cost	\$7,305	
Labor Fringes	\$2,004	
Equipment Cost	\$837	
Total	\$22,113	
Manhours	353	

One-Way Plank System		
Material Cost	\$8,091	
Labor Cost	\$1,815	
Labor Fringes	\$887	
Equipment Cost	\$265	
Total	\$11,058	
Manhours	92	

UPPER Campus Housing Project Nicole Hazy Structural Advisor: Dr Hanagan

Summary and Conclusions

The Upper Campus Housing Project could be designed as either a one-way hollow-core plank system or a two-way flat-plate system. Designing the structure as a one-way system will allow for easier construction and less cost. However, the two-way system will allow for the conversion of the structure to another use if needed by the University of Pittsburgh in the future. This conversion would be possible because of a more flexible floor plan and the ability to carry higher floor loads.

The existing conditions for this building consist of one-way hollow-core concrete plank (8" + 2 V_2 " topping), filled in solid where needed. This system has reinforced concrete masonry bearing and shear walls located at every exterior wall and most interior walls. These shear walls are of varying thicknesses and reinforcement. The hollow-core plank system, because of its nature, allows for considerably easy and quick construction. This system however, causes the structure to be defined only as a dormitory structure. Dormitory structures can only withstand a 40psf live load. Also, because the interior walls are also bearing and shear walls they cannot be moved to accommodate a new floor layout.

The proposed two-way flat-plate system consists of 10" slab with 26" x 26" reinforced columns. This system will have 10" reinforced concrete shear walls located at various places along the exterior of the building. The new system will also have a new building envelope consisting of light gauge metal stud walls with a brick façade. This system will allow for a flexible floor plan because all interior walls will only be partitions and can be moved if needed for future development of the structure.

This system also provides large bays (approximately 27' x 27') and higher floor loads (80psf).

Overall it is more important for developers to consider lower cost and not worry about the possible future development of the building. Therefore, the one-way hollowcore plank system is a better system overall for the structure of the Upper Campus Housing Project. This makes sense because it is unlikely that the professional engineers and developers would choose a system that was not the best choice. Below is a summary of the cost and duration of a typical bay for each system, proving that the oneway system is a better choice. However, the two-way system is a possibility for the structure and could be used in a similar design.

System	Cost/Typical Bay	Manhours/Typical Bay
Two-Way	\$22,113	353
One-Way	\$11,058	92

Acknowledgements

I would like to say thank you to everyone who has helped me during my time in Senior Thesis. First and foremost, Dr. Hanagan has been a wonderful advisor. She has helped me not only with senior thesis, but along the way during my time here as a Penn State AE. She has been a steady and consistent source of knowledge and experience. The knowledge I have gained from her will help me greatly in my path to success as a professional engineer. Second, I would like to thank my fellow AE students. We were all going through this together and managed to help each other along the way. Third, I would like to thank the entire AE faculty. The teachers in this department care a lot about their students and are truly interested in helping us succeed. Last, but certainly not least, I would like to thank everyone from Atlantic Engineering Services. My work there last summer provided me with a vast knowledge of information that will help me throughout my career and has helped me greatly during thesis.

References

Design of Concrete Structures 13th Edition ACI318-02 AISC Manual of Steel Construction PCI Design Handbook CRSI Design Handbook

Existing Foundation Details

Wind Load Distribution

Page 37

ADOSS Output

03-27-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 1 12:53:42 PM Licensed to: ae, university park, PA

		ppp	ppp	CC	CCC	aaa	aaa							
		р	р	С	С	а	а							
		р	р	С	С		а							
		р	р	С		aaa	aaaa							
		р	р	С	С	а	a							
		р	р	С	С	а	a							
		ppp	ppp	CC	CCC	aaa	aaaa							
		р												
		р												
A	AA	DDD	DD	0	00	SS	SSS	SSS	SSS					
А	A	D	D	0	0	S	S	S	S					
A	A	D	D	0	0	S		S						
AAA	AAAA	D	D	0	0	SS	SSS	SSS	SSS					
A	A	D	D	0	0		S		S	(ttttt	mm	mm)
A	A	D	D	0	0	S	S	S	S	(t	m m	m m)
A	А	DDD	DD	0	00	SS	SSS	SSS	SSS	(t	m m	n m)

Licensee stated above acknowledges that Portland Cement Association(PCA) is not and cannot be responsible for either the accuracy or adequacy of the

material supplied as input for processing by the ADOSS(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect

to the correctness of the output prepared by the ADOSS(tm) program. Although PCA has endeavored to produce ADOSS(tm) error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA

disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the ADOSS(tm) program.

03-27-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 2

12:53:42 PM Licensed to: ae, university park, PA

FILE NAME UNTITLED.ADS

PROJECT ID.	Thesis
SPAN ID.	LeftEW
ENGINEER	Nikki Hazy
DATE	03/27/06

UNITS U.S. in-lb CODE ACI 318-89

SLAB SYSTEMFLAT PLATEFRAME LOCATIONINTERIOR

DESIGN METHOD STRENGTH DESIGN MOMENTS AND SHEARS NOT PROPORTIONED

NUMBER OF SPANS 7

CONCRET	E FACTORS	SLABS	BEAMS	COLUMNS
DENSI	TY(pcf)	150.0	150.0	150.0
TYPE		NORMAL WGT	NORMAL WGT	NORMAL WGT
f'c	(ksi)	4.0	4.0	4.0
fct	(psi)	423.7	423.7	423.7
fr	(psi)	474.3	474.3	474.3

REINFORCEMENT DETAILS: NON-PRESTRESSED YIELD STRENGTH Fy = 60.00 ksi DISTANCE TO RF CENTER FROM TENSION FACE: AT SLAB TOP = 1.50 in OUTER LAYER AT SLAB BOTTOM = 1.50 in OUTER LAYER MINIMUM FLEXURAL BAR SIZE: AT SLAB TOP = # 4 AT SLAB BOTTOM = # 4 MINIMUM SPACING: IN SLAB = 6.00 in

03-27-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 3 12:53:42 PM Licensed to: ae, university park, PA

SPAN/LOADING DATA *****

SPAN	LENGTH	Tslab		WIDTH	L2**	*	SLAB		DESIGN	COLUMN	UN	IFORM	I
NUMBER	L1			LEFT	RIGHT		SYSTEM		STRIP	STRIP**	s.	DL	LIVE
)	(ft)	(in)		(ft)	(ft)				(ft)	(ft)	(ps:	£)	(psf
			• •			-		• •					
			I							I			
1*	1.1+	10.0		13.5	13.0		1		26.5	.0		25.0	
	8.0	10.0	I	13.5	13.0		1		26.5	4.0		25.0	
80.0 3 80.0	27.0	10.0		13.5	13.0		1		26.5	13.3		25.0	
	27.0	10.0		13.5	13.0		1		26.5	13.3		25.0	
	27.0	10.0		13.5	13.0		1		26.5	13.3		25.0	
	27.0	10.0		13.5	13.0		1		26.5	13.3		25.0	
7* 80 0	1.1+	10.0		13.5	13.0		1		26.5	.0		25.0	
			_ _			_		- -					

* -Indicates cantilever span information. ** -Strip width used for positive flexure.

***-L2 widths are 1/2 dist. to transverse column.

"E"-Indicates exterior strip.

+ -Indicates change in dimension due to support conditions.

PARTIAL LOADING DATA

PARTIAL LOADINGS ARE NOT SPECIFIED

03-27-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 4 12:53:42 PM Licensed to: ae, university park, PA

COLUMN/TORSIONAL DATA *********

COLUMN		COLUMN	ABOVE	SLAB	COLUMN	BELOW	SLAB	CAPITA	L**	COLUMN	
NUMBER		C1	C2	hgt	C1	C2	HGT	EXTEN.	DEPTH	STRIP*	
		(in)	(in)	(ft)	(in)	(in)	(ft)	(in)	(in)	(ft)	(ft)
 	• •										
-											
1		26.0	26.0	6.0	26.0	26.0	6.0	5.0	5.0	4.0	22.5
2		26.0	26.0	6.0	26.0	26.0	6.0	5.0	5.0	4.0	22.5
3		26.0	26.0	6.0	26.0	26.0	6.0	5.0	5.0	13.3	13.3
4		26.0	26.0	6.0	26.0	26.0	6.0	5.0	5.0	13.3	13.3
5		26.0	26.0	6.0	26.0	26.0	6.0	5.0	5.0	13.3	13.3
6		26.0	26.0	6.0	26.0	26.0	6.0	5.0	5.0	13.3	13.3
 	_ _										
_											

Columns with zero "C2" are round columns.

* -Strip width used for negative flexure.

**-Capital extension distance measured from face of column.

 COLUMN TRANSVERSE BEAM DROP PANEL/SOLID HEAD S										SU	PPORT	
	NUMBER		WIDTH	DEPTH	ECCEN		LEFT	RIGHT	WIDTH	THICK	FI	XITY*
			(in)	(in)	(in)		(ft)	(ft)	(ft)	(in)		00
-						- -						
	1		.0	.0	.0		.0	.0	.0	.0		100%
	2		.0	.0	.0		.0	.0	.0	.0		100%
	3		.0	.0	.0		.0	.0	.0	.0		100%
	4		.0	.0	.0		.0	.0	.0	.0		100%
	5		.0	.0	.0		.0	.0	.0	.0		100%
	б		.0	.0	.0		.0	.0	.0	.0		100%
		_ ,				_ _						
-		- -				- _						

* -Support fixity of 0% denotes pinned condition.
 Support fixity of 999% denotes fixed end condition.

03-27-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 5 12:53:42 PM Licensed to: ae, university park, PA

LATERAL LOAD/OUTPUT DATA

LATERAL LOADS ARE NOT SPECIFIED

OUTPUT DATA PATTERN LOADINGS: 1 THRU 4 PATTERN LIVE LOAD FACTOR (1-3) = 75%

LOAD FACTORS: U = 1.40*D + 1.70*L U = .75(1.40*D + 1.70*L + 1.70*W) U = .90*D + 1.30*W

OUTPUT OPTION(S): Input Echo Centerline Moments and Shears Column Strip Distribution Fac Shear Table Reinforcing Required Bar Sizing Additional Information Deflections Material Quantities

THE CAPITAL AT COLUMN 1 HAS BEEN MODIFIED TO FALL WITHIN THE SPECIFIED SLAB, DROP OR BEAM DIMENSIONS ** NEW CAPITAL EXTENSION = .00 in. AT LEFT OF COLUMN.

THE CAPITAL AT COLUMN 6 HAS BEEN MODIFIED TO FALL WITHIN THE SPECIFIED SLAB, DROP OR BEAM DIMENSIONS ** NEW CAPITAL EXTENSION = .00 in. AT RIGHT OF COLUMN.

**SLAB SPAN 2 IS NOT A TWO WAY SYSTEM. THE SLAB DESIGN MUST BE PERFORMED MANUALLY.

**TOTAL UNFACTORED DEAD LOAD = 466.192 kips LIVE LOAD = 250.513 kips

03-27-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 6 12:53:42 PM Licensed to: ae, university park, PA

---- STATICS PRINT-OUT FOR GRAVITY LOAD ANALYSIS ----

JOINT MOMENTS (ft - kips)

JOINT		PATTE	RN-1			PATTE	rn-2	
NUMBER	LEFT	RIGHT	TOP	BOTTOM	LEFT	RIGHT	TOP	BOTTOM
1		-12.3	8.4	8.4	 -4.6	-39.7	22.2	22.2
2	-299.5	462.3	-81.4	-81.4	-290.5	461.7	-85.6	-85.6
3	-550.7	541.6	4.5	4.5	-498.7	377.7	60.5	60.5
4	-531.8	529.3	1.3	1.3	-369.2	478.5	-54.7	-54.7
5	-554.6	593.7	-19.6	-19.6	-508.8	440.6	34.1	34.1
б	-350.5	4.6	172.9	172.9	-210.6	4.6	103.0	103.0
JOINT		PATTEI	RN-3			PATTE	RN-4	
NUMBER	LEFT	RIGHT	TOP	BOTTOM	LEFT	RIGHT	TOP	BOTTOM
1	-3.0	-10.6	6.8	6.8	-5.2	-33.3	19.2	19.2
2	-191.7	280.7	-44.5	-44.5	-319.7	492.2	-86.2	-86.2
3	-411.8	500.5	-44.4	-44.4	-603.6	582.2	10.7	10.7
4	-480.5	364.5	58.0	58.0	-563.3	558.9	2.2	2.2
5	-391.4	543.9	-76.2	-76.2	-596.8	652.6	-27.9	-27.9
б	-352.0	3.0	174.5	174.5	-373.0	5.2	183.9	183.9

JOINT SHEARS (kips)

JOINT	PATTE	RN-1	PATTE	 RN-2	PATTE	 RN-3	PATTE	RN-4
NUMBER	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT
- 1	-8.5	5.6	-8.5	-19.4	-5.6	7.4	-9.5	-
2	-74.3	109.7	-63.1	109.8	-58.0	69.9	-80.4	
119.2 3	-115.4	113.9	-112.6	75.0	-79.6	112.0	-127.5	
124.1 4	-113.1	112.7	-74.4	110.1	-110.5	73.7	-122.7	
122.0 5	-114.6	120.8	-112.3	83.2	-75.7	118.3	-124.8	
133.7 6	-103.8	8.5	-66.2	8.5	-104.1	5.6	-113.0	
9.5								

03-27-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 7 12:53:42 PM Licensed to: ae, university park, PA

DESIGN MOMENT ENVELOPES AT CRITICAL SECTIONS FROM SUPPORTS

_									
	COL NUM	LOAD TYPE	CR SE	OSS CTN	DESIGN MOMENT (ft-k)	DISTANCE CR.SECTN (ft)	LOAD PTRN	MAX.I.P. DISTANCE (ft)	LOAD PTRN
	1	TOTL	LEFT	TOP BOT	-3.5 .0	.190 .000	4 0	1.083	1 0
			RGHT	TOP BOT	.0 -15.8	.000 1.292	0 4	2.800	3 0
	2	TOTL	LEFT	TOP BOT	-215.6 .0	1.400 .000	4 0	.000 .000	0 0
			RGHT	TOP BOT	323.3 .0	1.500 .000	4 0	5.400 .000	2 0
	3	TOTL	LEFT	TOP BOT	-422.3 .0	1.500 .000	4 0	6.750 .000	3 0
			RGHT	TOP BOT	406.1 .0	1.500 .000	4 0	6.750 .000	2 0
	4	TOTL	LEFT	TOP BOT	-389.2 .0	1.500 .000	4 0	6.750 .000	2 0
			RGHT	TOP BOT	385.9 .0	1.500 .000	4 0	6.750 .000	3 0
	5	TOTL	LEFT	TOP BOT	-419.6 .0	1.500 .000	4 0	6.750 .000	3 0
			RGHT	TOP BOT	462.0 .0	1.500 .000	4 0	6.750 .000	2 0

UPPER Campus Housing Project Nicole Hazy Structural Advisor: Dr Hanagan

6	TOTL LEFT TO	P	-234.4	1.292	4		4.050	2	-
		BOT	.0	.000		0	.000		0
	RGHT	TOP	3.5	.190		4	1.083		1
		BOT	.0	.000		0	.000		0

03-27-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 8 12:53:42 PM Licensed to: ae, university park, PA

DESIGN MOMENT ENVELOPES AT CRITICAL SECTIONS ALONG SPANS

SPAN	LOAD	CRIT	ICAL	DESIGN	LOAD	MAX. I.P.	LOAD	MAX. I.P.	
LOAD NUM DTDN	TYPE	SECT	ION	MOMENT	PTRN	DIST LEFT	PTRN	DIST RGHT	
		(f	t)	(ft-k)		(ft)		(ft)	
							•		
2	TOTL	.600	TOP BOT	.0 14.4	0 1	.000 -1.000	0 2	.000 600	0
3	TOTL	12.825	TOP BOT	.0 290.1	0 4	.000 7.425	0 1	.000 8.775	0 1
4	TOTL	14.175	TOP BOT	.0 263.2	0 3	.000 8.775	0 1	.000 7.425	0 1
5	TOTL	12.825	TOP BOT	.0 260.2	0 2	.000 7.425	0 1	.000 8.775	0 2
6	TOTL	14.175	TOP BOT	.0 329.4	0 4	.000 8.775	0 3	.000 8.775	0 1

--

03-27-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 9 12:53:42 PM Licensed to: ae, university park, PA

DISTRIBUTION OF DESIGN MOMENTS AT SUPPORTS *

* * * * * * * * * * * * * * * * * * * *	* * * * * * * *
---	-----------------

COL STRIP	CROSS		TOTAL	TOTAL-	-VE	ERT	COLUMN	S	TRIP	BEAN	1		MIDDLE	
NUM	SECTN	ſ	MOMENT	DIFFE	REN	ICE	MOM	EN	г	MOMEN	\mathbf{T}		MOMEN	IT
			(ft-k)	(ft-k)	(8)	(ft-k)	(왕)	(ft-k)	(8)	(ft-k)	(%
)														
1	LEFT	TOP	-3.5	.0	(0)	-3.5	(98)	.0	(0)	1	(
1)		BOT	0	0	(0)	0	(0)	0	(0)	0	(
0)		DOI	.0	.0	(0)	.0	(0)	.0	(0)	.0	(
	_			_			-		• •					
0)	RGHT	TOP	.0	.0	(0)	.0	(0)	.0	(0)	.0	(
0)		BOT	-15.8	.0	(0)	-15.6	(98)	.0	(0)	2	(
1)														
2	T.FFT	TΩD	-215 6	0	(0)	-161 7	(75)	0	(0)	-53 9	(
25)		IOF	213.0	.0	(0)	101.7	(15)	.0	(0)	55.7	(
		BOT	.0	.0	(0)	.0	(0)	.0	(0)	.0	(
0)														
	RGHT	TOP	323.3	.0	(0)	242.5	(75)	.0	(0)	80.8	(
25)														
0.)		BOT	.0	.0	(0)	.0	(0)	.0	(0)	.0	(
0)														
3	LEFT	TOP	-422.3	.0	(0)	-316.7	(75)	.0	(0)	-105.6	(
25)		DOT	0	0	1	0.)	0	,	0.)	0	1	0.)	0	1
0)		БОТ	.0	.0	(0)	.0	C	0)	.0	(0)	.0	(
253	RGHT	TOP	406.1	.0	(0)	304.6	(75)	.0	(0)	101.5	(
45)		BOT	.0	. 0	(0)	.0	(0)	. 0	(0)	.0	(
0)					``	- /		``	- /		`	- /		,

Upper Campus Housing Project Nicole Hazy Structural Advisor: Dr Hanagan

4 LE	FT TOP -	389.2	.0 (0)	-2	91.9 (7	75)	.0	(0)	-	97.3 (2	25)
0)	BOI	.0	.0	(0)	.0	(0)		.0	(0)	.0	(
05)	RGHT TOP	385.9	.0	(0)	289.4	(75)		.0	(0)	96.5	(
25)	BOT	. 0	.0	(0)	.0	(0)		.0	(0)	.0	(
5	LEFT TOP	-419.6	.0	(0)	-314.7	(75)		.0	(0)	-104.9	(
25)	BOT	.0	.0	(0)	.0	(0)		.0	(0)	.0	(
05)	RGHT TOP	462.0	.0	(0)	346.5	(75)		.0	(0)	115.5	(
25)	BOT	.0	.0	(0)	.0	(0)		.0	(0)	.0	(
6	LEFT TOP	-234.4	.0	(0)	-230.8	(98)		.0	(0)	-3.6	(
1) 0)	BOT	.0	.0	(0)	.0	(0)		.0	(0)	.0	(
1 \	RGHT TOP	3.5	.0	(0)	3.5	(98)		.0	(0)	.1	(
1) 0)	BOT	.0	.0	(0)	.0	(0)		.0	(0)	.0	(

03-27-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 10 12:53:42 PM Licensed to: ae, university park, PA

DISTRIBUTION OF DESIGN MOMENTS IN SPANS

SPAN	I CROS	s	TOTAL	TOTAL-	-VI	ERT	COLUMN	S	TRIP	BEAN	1		MIDDLE	
NUM)	SECTI	N	MOMENT (ft-k)	DIFFEF (ft-k)	REI (NCE %)	MOME (ft-k)	EN'	Г %)	MOMEN (ft-k)	11 (%)	MOMEN (ft-k)	IT (%
 2 0)	.60	TOP BOT	.0 14.4	. 0 . 0	(0)	.0 8.6	(0) 60)	. 0 . 0	(0)	.0	(
39) 30) 39)	12.82	top bot	.0 290.1	.0	(0) 0)	.0 174.1	(0) 60)	.0	(0) 0)	.0 116.1	(
4 0) 40)	14.18	top bot	.0 263.2	.0	(0) 0)	.0 157.9	(0) 60)	. 0 . 0	(0) 0)	.0 105.3	(
5 0) 39)	12.82	TOP BOT	.0 260.2	.0	(0) 0)	.0 156.1	(0) 60)	.0	(0) 0)	.0 104.1	(
6 0) 40)	14.18	TOP BOT	.0 329.4	.0 .0	(0) 0)	.0 197.6	(0) 60)	.0	(0) 0)	.0 131.8	(

03-27-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 11 12:53:42 PM Licensed to: ae, university park, PA

S H E A R A N A L Y S I S ******

NOTE--Allowable shear stress in slabs = 252.96 psi when ratio of col. dim. (long/short) is less than 2.0.

--Wide beam shear (see "CODE") is not computed, check manually.

--After the column numbers, C = Corner, E = Exterior, I = Interior.

DI	R E C T	S H	EAR	W I T	H T	R A N S F	ER O	F M O M	ΕΝΤ
			- A R O	UND		COLUM	N – –		
COL.	ALLOW.	PATT	REACTION	SHEAR	PATT	REACTION	UNBAL.	SHEAR	SHEAR
NO.	STRESS	NO.		STRESS	NO.		MOMENT	TRANSFR	
STRESS	5								
	(psi)		(kips)	(psi)		(kips)	(ft-k)	(ft-k)	(psi)
1E	252.96	1	11.6	13.97	2	.0	-54.7	-20.4	51.09
21	247.27	4	195.7	152.17	4	195.7	172.5	69.0	195.18
3I	247.27	4	247.6	192.55	4	247.6	-21.4	-8.5	197.88
4I	247.27	4	240.7	187.16	4	240.7	-4.4	-1.8	188.25
5I	247.27	4	254.6	197.94	4	254.6	55.8	22.3	211.86
бE	252.96	4	119.6	143.93	4	119.6	-251.0	-93.5	247.48

03-27-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 12 12:53:42 PM Licensed to: ae, university park, PA

N E G A T I V E R E I N F O R C E M E N T

COLUMN*: NUMBER*	PATT NO.	*LOCA' *@COL	FION * FACE* *	TOTAL DESIGN (ft-k)	* * *	COLUMN AREA (sq.in)	STRIP WIDTH (ft)	* * *	MIDDLE AREA (sq.in)	STRIP WIDTH (ft)
1** 2	 4 4	L 	 R	-3.5 323.3		.86 7.58	4.0 4.0		4.86 4.86	22.5 22.5
3	4	L	.	-422.3		8.78	13.3		2.86	13.3
5	4		R	462.0		9.67	13.3		3.08	13.3
6	4	Ъļ	j .	-234.4		6.29	13.3		2.86	13.3

** - Positive reinforcement required, compute manually.

SPAN *	PATT	* LOCATION *	TOTAL	*	COLUMN	STRIP	*	MIDDLE	STRIP
NUMBER*	NO.	*FROM LEFT*	DESIGN	*	AREA	WIDTH	*	AREA	WIDTH
		(ft) *	(ft-k)	*	(sq.in)) (ft)	*	(sq.in)	(ft)
2	1	.6	14.4		.86	4.0		4.86	22.5
3	4	12.8	290.1		4.70	13.3		3.10	13.3
4	3	14.2	263.2		4.25	13.3		2.86	13.3
5	2	12.8	260.2		4.20	13.3		2.86	13.3
6	4	14.2	329.4		5.35	13.3		3.53	13.3

03-27-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 13

12:53:42 PM Licensed to: ae, university park, PA

D E S I G N R E S U L T S ******

NOTE--The schedule given below is a guide for proper reinforcement placement and is based on reasonable engineering judgement. Unusual boundary and/or loading conditions may require modification of this schedule.

TD	*			С	ΟL	U	M N		S	т	R	I	Ρ					*1	ΙI	D	D	L	Е	5	ЗТ	R
ΙΡ	*		LONG		BAR	S		*		2	но	RI		В	ARS	5		*		I	LON	IG		BAF	s	
COLUMN H-	*	-B	A R -	L	ΕN	G	Т Н-	*	-В	A	R	-	L	Е	NG	Γ	'H-	*	-В	A	R	-	L	ΕŇ	I G	Т
NUMBER	*	NO	SIZE	LE	FT	F	RIGHT	*	NO	5	SIZ	Έ	LE	FΤ		RI	GHT	*	NO	ç	SIZ	Έ	LE	FΤ		
(5+)	*			(f	t)	(ft)	*					(f	t)		(f	t)	*					(f	t)		
(IC) 																										
 1**		3	# 4	1	.08		3.51		2		#	4	1	.0	8	2	2.25		25		#	4	1	.08	}	
3.51 2		3	#10	8	.53		8.53		3		#1	.0	7	.0	0	7	.10		25		#	4	6	.55		
6.95 3		10	# 6	8	.53		8.53		10		#	6	6	.0	5	6	.05		15		#	4	8	.30)	
8.30 4		10	# 6	8	.53		8.53		9		#	6	6	.0	5	6	.05		15		#	4	8	.30)	
8.30 5		11	# 6	8	.53		8.53		11		#	6	6	.0	5	6	.05		16		#	4	8	.30)	
8.30 6		11	# 5	8	.53		1.08		10		#	5	6	.0	5	1	.08		15		#	4	6	.55		
1.08		_		-					•			-	-		-							-	-			

** - Positive reinforcement required, design manually.

P O S I T I V E R E I N F O R C E M E N T

* COLUMN STRIP * MIDDLE STRIP

* LON	G	BAF	RS	*	SHOR	RΤ	BA	RS	,	*	LON	G	BAR	s	3	* SHO	RT	BA	RS			
SPAN	*		- B A	A R	2	*		– B	А	R		*		в	А	R	*		- B	А	R	
NUMBER	*	NO	SIZE	L	ENGTH	*	NO	SI	ΖE	LE	NGTH	*	NO	SIZ	ΖE	LENGTH	*	NO	SIZ	ΖE		
LENGTH																						
	*				(ft)	*				(ft)	*				(ft)	*					
(ft)																						
2		3	# 4	Ł	7.17		2	#	4		6.42		13	#	4	7.67		12	#	4		
6.22																						
3		12	# 4	Ł	26.50		12	#	4	2	0.25		8	#	4	27.50		8	#	4		
18.90																						
4		11	# 4	Ł	26.50		11	#	4	2	0.25		8	#	4	27.50		7	#	4		
18.90																						
5		11	# 4	Ł	26.50		10	#	4	2	0.25		8	#	4	27.50		7	#	4		
18.90																						
б		9	# 5	5	26.17		9	#	5	2	3.04		9	#	4	26.67		9	#	4		
22.37																						

03-27-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 14 12:53:42 PM Licensed to: ae, university park, PA

A D D I T I O N A L I N F O R M A T I O N A T S U P P O R T S

TRA	ANSFEI	* ۲	REINF.	SUMMARY*	ADD'L F	R/F REQ'I	DUE TO UI	NBALANC:	ED (U.) M	OMENT		
CC	OLUMN	*		*								
NU D/E	- JMBER	*	W/O U. REQ'D	MOMENT * - PROV'D*	MAX.U. MOMENT	*GAMMA* * -f *	FLEXURAL TRANSFER	*PATT* *NO. *	CRITICAL SLABW -	SE AREA	CTI -	NC
1()1		*	(sq.in)	(sq.in)*	(ft-k)	* *	(ft-k) *	* (:	ft) (sq	.in)		
4	1		5.72	6.00	-44.4	.63	-27.8	2	5.5	.74	0	#
- ша с	2		12.44	12.62	172.5	.60	103.5	4	5.5	2.83	0	
#1(3		11.65	11.80	-121.0	.60	-72.6	2	5.5	1.96	0	#
6	4		10.92	11.36	-116.0	.60	-69.6	3	5.5	1.87	0	#
6	5		12.75	12.88	152.5	.60	91.5	3	5.5	2.49	0	#
6 5	6		9.15	9.51	-367.8	.63	-230.9	4	5.5	6.75	14	#

NOTE: Zero transfer "CRITICAL SLABW" indicates no support dimensions given for transfer. If beam(s) are present, transfer mode may be due to beam shear and/or torsion, check manually.

		-				
SPAN *			*	TOTAI	FACTORE	D SPAN
NUMBER*	AT MID	SPAN	*	STATI	C DESIGN	MOMENT
*	REQ'D	PROV'D.	*	(W/O	PARTIAL	LOADS)
*	(sq.in)	(sq.in)	*		(ft-k)
2	5.72	6.00			28.7	

3	7.79	8.00	660.2
4	7.11	7.40	660.2
5	7.06	7.20	660.2
6	8.88	9.18	660.2

03-27-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 15 12:53:42 PM Licensed to: ae, university park, PA

D E F L E C T I O N A N A L Y S I S

- NOTES--The deflections below must be combined with those of the analysis in the perpendicular direction. Consult users manual for method of combination and limitations.
 - --Spans 1 and 7 are cantilevers.
 - --Time-dependent deflections are in addition to those shown and must be computed as a multiplier of the dead load(DL) deflection. See "CODE" for range of multipliers.
 - --Deflections due to concentrated or partialloads may be larger at the point of application than those shown at the centerline. Deflections are computed as from an average uniform loading derived from the sum of all loads applied to the span.

--Modulus of elasticity of concrete, Ec = 3834. ksi

*	DEAD	*	C O L DE	U FLE	M N CTION	S T DUE	R I P TO:	* *	M I D DE	D FLE	L E CTION	S T DUE	R I P TO:	
*	LOAD	*_				- - ·								
*	Ieff.	*	DEAD	*	LIVE	*	TOTAL	*	DEAD	*	LIVE	*	TOTAL	*
*	(in^4)	*	(in)	*	(in)	*	(in)	*	(in)	*	(in)	*	(in)	*
	26500			 1					0	 1		·		
	20500	•	.00	T	.00	JT	.002		.00	T	.00	1	.002	
	26500. 26500.		00	2	00)1	002		00	5	00)3	007	
	23806		.15	5	.14	13	.298		.08	2	.07	'3	.155	
	23806. 22484.		.14	7	.13	34	.281		.07	0	.06	54	.134	
	22416	•	.14	4	.13	31	.274		.06	7	.06	52	.128	
	23605		.19	1	.15	51	.342		.09	4	.06	8	.161	
	26500		01	1	00)6	016		01	1	00)6	017	
-	* * * * * *	* DEAD * LOAD * Ieff. * (in^4) 26500 26500 23806 22484 22416 23605 26500	* * DEAD * * DEAD *- * LOAD *- * Ieff. * * (in^4) * 26500. 26500. 23806. 22484. 22416. 23605. 26500.	* C O L * DEAD * DE * LOAD * * Ieff. * DEAD * (in^4) * (in) 	* C O L U * DEAD * DEFLE * LOAD *	* C O L U M N * DEAD * DEFLECTION * LOAD *	* C O L U M N S T * DEAD * DEFLECTION DUE * LOAD *	* * C O L U M N S T R I P * DEAD * DEFLECTION DUE TO: * LOAD *	<pre>* * C O L U M N S T R I P * * DEAD * DEFLECTION DUE TO: * * LOAD *</pre>	<pre>* * C O L U M N S T R I P * M I D * DEAD * DEFLECTION DUE TO: * DE * LOAD *</pre>	<pre>* * C O L U M N S T R I P * M I D D * DEAD * DEFLECTION DUE TO: * DEFLE * LOAD *</pre>	<pre>* * C O L U M N S T R I P * M I D D L E * DEAD * DEFLECTION DUE TO: * DEFLECTION * LOAD *</pre>	<pre>* * C O L U M N S T R I P * M I D D L E S T * DEAD * DEFLECTION DUE TO: * DEFLECTION DUE * LOAD *</pre>	<pre>* * C O L U M N S T R I P * M I D D L E S T R I P * DEAD * DEFLECTION DUE TO: * DEFLECTION DUE TO: * LOAD *</pre>

TOTAL QUANTITIES

CONCRETE		96.6	cu.yd
FORMWORK		3131.	sq.ft
REINFORCEMENT	(IN THE	DIRECTION	OF ANALYSIS)
(NEGATIVE)		2829.	lbs
(POSITIVE)		2663.	lbs

SUMMARY OF QUANTITIES

CONCRETE	 .83	cu.ft/sq.ft
FORMWORK	 1.00	sq.ft/sq.ft
REINFORCEMENT**	 1.75	lbs / sq.ft

**(IN THE DIRECTION OF ANALYSIS)

* Program completed as requested *

03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 1 9:08:18 PM Licensed to: ae, university park, PA

		ppp	ppp	CCCCC		aaa	aaa							
		р	р	С	С	а	а							
		р	р	С	С		а							
		р	р	С		aaa	aaaa							
		р	р	С	С	а	а							
		р	р	С	С	а	а							
		ppp	ppp	CC	CCC	aaa	aaaa							
		р												
		р												
A	AA	DDD	DD	0	00	SSS	SSS	SSS	SSS					
А	A	D	D	0	0	S	S	S	S					
А	A	D	D	0	0	S		S						
AAA	AAAA	D	D	0	0	SSS	SSS	SSS	SSS					
А	A	D	D	0	0		S		S	(ttttt	mm	mm)
А	А	D	D	0	0	S	S	S	S	(t	m m	m m)
А	А	DDD	DD	0	00	SSS	SSS	SSS	SSS	(t	m	m m)

Computer program for ANALYSIS AND DESIGN OF SLAB SYSTEMS

Licensee stated above acknowledges that Portland Cement Association(PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the ADOSS(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect

to the correctness of the output prepared by the ADOSS(tm) program. Although PCA has endeavored to produce ADOSS(tm) error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the ADOSS(tm) program.

03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 2 9:08:18 PM Licensed to: ae, university park, PA FILE NAME P:\THESIS\ADOSS\TYPICAL1.ADS PROJECT ID. Thesis _____ SPAN ID. Typical First _____ ENGINEER Nikki Hazy 03/19/06 DATE 22:52:01 TIME U.S. in-lb UNITS ACI 318-89 CODE FLAT PLATE SLAB SYSTEM FRAME LOCATION INTERIOR STRENGTH DESIGN DESIGN METHOD MOMENTS AND SHEARS NOT PROPORTIONED NUMBER OF SPANS 4 SLABS CONCRETE FACTORS COLUMNS BEAMS 150.0 150.0 150.0 DENSITY(pcf) TYPE NORMAL WGT NORMAL WGT NORMAL WGT f'c (ksi) 4.0 4.0 4.0 (psi) fct 423.7 423.7 423.7 474.3 474.3 474.3 fr (psi)

REINFORCEMENT DETAILS: NON-PRESTRESSED YIELD STRENGTH Fy = 60.00 ksi DISTANCE TO RF CENTER FROM TENSION FACE:

AT SLAB TOP = 1.50 in OUTER LAYER AT SLAB BOTTOM = 1.50 in OUTER LAYER MINIMUM FLEXURAL BAR SIZE: AT SLAB TOP = # 4 AT SLAB BOTTOM = # 4 MINIMUM SPACING: IN SLAB = 6.00 in

03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 3 9:08:18 PM Licensed to: ae, university park, PA

SPAN/LOADING DATA

SPAN	LENGTH	Tslab	WIDTH	L2***	SLAB	DESIGN	COLUMN	UNIFORM	
NUMBER	L1		LEFT	RIGHT	SYSTEM	STRIP	STRIP**	S. DL	LIVE
	(ft)	(in)	(ft)	(ft)		(ft)	(ft)	(psf)	(psf
 							-		
	1.1+	10.0	13.5	13.5	1	27.0	.0	25.0	
	27.0	10.0	13.5	13.5	1	27.0	13.5	25.0	
	26.0	10.0	13.5	13.5	1	27.0	13.0	25.0	
	1.1+	10.0	13.5	13.5	1	27.0	.0	25.0	
							_		

___|

* -Indicates cantilever span information.

** -Strip width used for positive flexure.

***-L2 widths are 1/2 dist. to transverse column.

"E"-Indicates exterior strip.

+ -Indicates change in dimension due to support conditions.

PARTIAL LOADING DATA

03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 4 9:08:18 PM Licensed to: ae, university park, PA

COLUMN/TORSIONAL DATA ********

COLUMN		COLUMN	ABOVE	SLAB		COLUMN	BELOW	SLAB	CAPITA	L**	COLUMN	
MIDDLE NUMBER		C1	C2	HGT		C1	C2	HGT	EXTEN.	DEPTH	STRIP*	
STRIP*	· I	(; ; ;)	((5 +)	· I	(; ; ;)	((5 -)	·	(· (5+)	(5 +)
	I	(111)	(111)	(IL)	I	(111)	(111)	(IL)	(111)	(111)	(IL)	(IL)
	-				-							
-												
1		26.0	26.0	6.0		26.0	26.0	6.0	5.0	5.0	13.5	13.5
2		26.0	26.0	6.0		26.0	26.0	6.0	5.0	5.0	13.0	14.0
3		26.0	26.0	6.0		26.0	26.0	6.0	5.0	5.0	13.0	14.0
	_ _				. _						.	
_												

Columns with zero "C2" are round columns.

* -Strip width used for negative flexure.

**-Capital extension distance measured from face of column.

	COLUMN	TRANS	SVERSE	BEAM	DI	ROP PANEL/S	SOLID HEAD		SUPPORT
	NUMBER	WIDTH	DEPTH	eccen	LEFT	RIGHT	WIDTH	THICK	FIXITY*
		(in)	(in)	(in)	(ft)	(ft)	(ft)	(in)	8
	1	.0	.0	.0	.0	.0	.0	.0	100%
	2	.0	.0	.0	.0	.0	.0	.0	100%

3		.0	.0	.0	.0	.0	.0	.0	100%
	-								

* -Support fixity of 0% denotes pinned condition.
 Support fixity of 999% denotes fixed end condition.

03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 5 9:08:18 PM Licensed to: ae, university park, PA

LATERAL LOADS ARE SPECIFIED AS BEING CAUSED BY WIND

LATERAL LOAD FROM FLOORS ABOVE (Pa) = .00 kips

LATERAL LOAD AT THIS FLOOR (Pb) = .00 kips

NOTE: The analysis procedure adopted by the program is approximate.

LATERAL LOADS DISTRIBUTED TO THE COLUMN AND MIDDLE STRIPS ACCORDING TO CODE DISTRIBUTION FACTORS.

OUTPUT DATA PATTERN LOADINGS: 1 THRU 8 PATTERN LIVE LOAD FACTOR (1-3) = 75% LOAD FACTORS: U = 1.40*D + 1.70*L U = .75(1.40*D + 1.70*L + 1.70*W) U = .90*D + 1.30*W

OUTPUT OPTION(S): Input Echo Centerline Moments and Shears Column Strip Distribution Fac Shear Table Reinforcing Required Bar Sizing

Additional Information Deflections Material Quantities

THE CAPITAL AT COLUMN 1 HAS BEEN MODIFIED TO FALL WITHIN THE SPECIFIED SLAB, DROP OR BEAM DIMENSIONS

** NEW CAPITAL EXTENSION = .00 in. AT LEFT OF COLUMN.

THE CAPITAL AT COLUMN 3 HAS BEEN MODIFIED TO FALL WITHIN THE SPECIFIED SLAB, DROP OR BEAM DIMENSIONS ** NEW CAPITAL EXTENSION = .00 in. AT RIGHT OF COLUMN.

**TOTAL UNFACTORED DEAD LOAD = 221.665 kips LIVE LOAD = 119.160 kips

03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 6

9:08:18 PM Licensed to: ae, university park, PA

---- STATICS PRINT-OUT FOR GRAVITY LOAD ANALYSIS ----

JOINT MOMENTS (ft - kips)

JOINT		PATTE	RN-1			PATTE	RN-2	
NUMBER	LEFT	RIGHT	TOP	BOTTOM	LEFT	RIGHT	TOP	BOTTOM
1	-4.7	349.0	-172.2	-172.2	-4.7	208.5	-101.9	-101.9
2	-614.8	593.1	10.8	10.8	-458.4	542.8	-42.2	-42.2
3	-315.0	4.7	155.1	155.1	-314.4	3.1	155.7	155.7
JOINT		PATTE	rn-3			PATTE	RN-4	
NUMBER	LEFT	RIGHT	TOP	BOTTOM	LEFT	RIGHT	TOP	BOTTOM
1	-3.1	348.5	-172.7	-172.7	-5.3	369.3	-182.0	-182.0
2	-569.6	449.0	60.3	60.3	-681.5	657.5	12.0	12.0
3	-182.9	4.7	89.1	89.1	-329.7	5.3	162.2	162.2

J	0	Ι	Ν	Т	S	Η	Е	А	R	S	(kips)
---	---	---	---	---	---	---	---	---	---	---	----------

JOINT	PATTE	ERN-1	PATTE	RN-2	PATTE	rn-3	PATTERN-4		
NUMBER	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT	
-									
1	-8.7	105.1	-8.7	66.9	-5.7	105.1	-9.7		
114.1									
2	-123.8	120.5	-85.4	117.9	-121.5	83.5	-137.3		
133.6									

3 -100.3 8.7 -100.3 5.7 -63.1 8.7 -108.4 9.7 03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 7 9:08:18 PM Licensed to: ae, university park, PA

---- STATICS PRINT-OUT FOR GRAVITY/LATERAL LOAD ANALYSIS ----

JOINT MOMENTS (ft - kips)

JOINT		PATTE	RN-5			PATTE	CRN-6	
NUMBER	LEFT	RIGHT	TOP	BOTTOM	LEFT	RIGHT	TOP	BOTTOM
1	-2.0	144.0	-71.0	-71.0	-2.0	144.0	-71.0	-71.0
2	-265.8	256.5	4.7	4.7	-265.8	256.5	4.7	4.7
3	-128.6	2.0	63.3	63.3	-128.6	2.0	63.3	63.3
JOINT		PATTE	RN-7			PATTE	RN-8	
NUMBER	LEFT	RIGHT	TOP	BOTTOM	LEFT	RIGHT	TOP	BOTTOM
1 2	-3.9 -511.1	276.9 493.1	-136.5	-136.5	-3.9 -511.1	276.9 493.1	-136.5	-136.5 9.0
3	-247.3	3.9	121.7	121.7	-247.3	3.9	121.7	121.7

JOINT SHEARS (kips)

JOINT	T PATTERN-5		PATTE	RN-6	PATTE	RN-7	PATTE	RN-8				
NUMBER	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT				
_												
1 85.6	-3.7	44.4	-3.7	44.4	-7.3	85.6	-7.3					
2 100.2	-53.5	52.0	-53.5	52.0	-103.0	100.2	-103.0					
37.3	-42.2	3.7	-42.2	3.7	-81.3	7.3	-81.3					

03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 8 9:08:19 PM Licensed to: ae, university park, PA

_

DESIGN MOMENT ENVELOPES AT CRITICAL SECTIONS FROM SUPPORTS

COL NUM	LOAD TYPE	CR SE	OSS CTN	DESIGN MOMENT (ft-k)	DISTANCE CR.SECTN (ft)	LOAD PTRN	MAX.I.P. DISTANCE (ft)	LOAD PTRN
1	TOTL	LEFT	TOP BOT	-3.6 .0	.190	4 0	1.083	1 0
		RGHT	TOP BOT	229.4 .0	1.292 .000	4 0	4.050 4.050	2 5
	VERT	LEFT	TOP BOT	-3.6 .0	.190 .000	4 0	1.083	1 0
		RGHT	TOP BOT	229.4 .0	1.292 .000	4 0	4.050 .000	2 0
2	TOTL	LEFT	TOP BOT	-485.8 .0	1.500 .000	4 0	6.750 6.750	2 6
		RGHT	TOP BOT	467.2 .0	1.500 .000	4 0	6.500 6.500	3 5
	VERT	LEFT	TOP BOT	-485.8 .0	1.500 .000	4 0	6.750 .000	2 0
		RGHT	TOP BOT	467.2 .0	1.500 .000	4 0	6.500 .000	3 0
3	TOTL	LEFT	TOP BOT	-197.2 .0	1.292 .000	4 0	3.900 3.900	2 6
		RGHT	TOP BOT	3.6 .0	.190 .000	4 0	1.083	1 0
	VERT	LEFT	TOP	-197.2	1.292	4	3.900	2

B	TC	.0	.000	0	.000	0
RGHT	TOP	3.6	.190	4	1.083	1
	BOT	.0	.000	0	.000	0
						·
03-21-** ADOSS(tm) (5 01	Proprietary	Software of		CEMENT ASSN	Dage

03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 9 9:08:19 PM Licensed to: ae, university park, PA

DESIGN MOMENT ENVELOPES AT CRITICAL SECTIONS ALONG SPANS

SPAN LOAD NUM PTRN	LOAD TYPE	CRIT SECT (f	ICAL ION t)	DESIGN MOMENT (ft-k)	LOAD PTRN	MAX. I.P. DIST LEFT (ft)	LOAD PTRN	MAX. I.P. DIST RGHT (ft)	
2	TOTL	12.825	TOP BOT	.0 333.4	0 4	.000 8.775	0 1	.000 8.775	03
	VERT	12.825	TOP BOT	.0 333.4	0 4	.000 8.775	0 1	.000 8.775	0 3
3	TOTL	14.950	TOP BOT	.0 304.4	0 4	.000 9.750	0 2	.000 7.150	0 1
	VERT	14.950	TOP BOT	.0 304.4	0 4	.000 9.750	0 2	.000 7.150	0 1

03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 10 9:08:19 PM Licensed to: ae, university park, PA

DISTRIBUTION OF DESIGN MOMENTS AT SUPPORTS

COL	CROSS	TOTAL	TOTAL-	-VE	ERT	COLUMN	S	TRIP	BEAN	4		MIDDLE
NUM	SECTN	MOMENT (ft-k)	DIFFER (ft-k)	REI (NCE %)	MOMI (ft-k)	EN' (T %)	MOMEN (ft-k)) 11	%)	MOMENT (ft-k) (%
	LEFT TOP	-3.6	.0	(0)		(98)	.0	(0)	1 (
1) 0)	BOT	.0	.0	(0)	.0	(0)	.0	(0)	.0 (
1)	RGHT TOP	229.4	.0	(0)	225.9	(98)	.0	(0)	3.5 (
0)	BOT	.0	.0	(0)	.0	(0)	.0	(0)	.0 (
2 25)	LEFT TOP	-485.8	.0	(0)	-364.3	(75)	.0	(0)	-121.4 (
0)	BOT	.0	.0	(0)	.0	(0)	.0	(0)	.0 (
25)	RGHT TOP	467.2	.0	(0)	350.4	(75)	.0	(0)	116.8 (
0)	BOT	.0	.0	(0)	.0	(0)	.0	(0)	.0 (
3 1)	LEFT TOP	-197.2	.0	(0)	-194.2	(98)	.0	(0)	-3.0 (
0)	BOT	.0	.0	(0)	.0	(0)	.0	(0)	.0 (
1)	RGHT TOP	3.6	.0	(0)	3.5	(98)	.0	(0)	.1 (
0)	BOT	.0	.0	(0)	.0	(0)	.0	(0)	.0 (

DISTRIBUTION OF DESIGN MOMENTS IN SPANS

SPAI STRII	N CROSS P	3	TOTAL	TOTAL-	VERT	COLUMN STRI	P BEAM		MIDDLE
NUM)	SECTI	N 	MOMENT (ft-k)	DIFFER (ft-k)	ENCE (%)	MOMENT (ft-k) (%	MOMENT	%)	MOMENT (ft-k) (%
 2 0)	12.82	TOP	.0	.0	(0)	.0 (0)	.0 (0)	.0 (
40)		вот	333.4	. 0	(0)	200.1 (60)	.0 (0)	133.4 (
0)	12.82	TOP	.0	.0	(0)	.0 (0)	.0 (0)	.0 (
40)		вот	333.4	.0	(0)	200.1 (60)) .0 (0)	133.4 (
3 0)	14.95	TOP	.0	.0	(0)	.0 (0)	.0 (0)	.0 (
39)		BOT	304.4	.0	(0)	182.6 (60)	.0 (0)	121.7 (

03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 11 9:08:19 PM Licensed to: ae, university park, PA

DISTRIBUTION OF DESIGN MOMENTS IN SPANS

T	T	T	T	T	T	T	T	T	T	T	T	T	×	T	T	T	T	T	T	×	T	T	T	T	T	T	T	×	×	T	T	*	*	* *	~ ~	. *	

SPAN	I CROSS	TOTAL	TOTAL-VERT	COLUMN STRIP	BEAM	MIDDLE
NUM	SECTN	MOMENT (ft-k)	DIFFERENCE (ft-k) (%)	MOMENT (ft-k) (%)	MOMENT (ft-k) (%)	MOMENT (ft-k) (%
 0) 40)	14.95 TOP BOT	.0 304.4	.0 (0) .0 (0)	.0 (0) 182.6 (60)	.0 (0) .0 (0)	.0 (121.7 (

03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 12

9:08:19 PM Licensed to: ae, university park, PA

S H E A R A N A L Y S I S *****

NOTE--Allowable shear stress in slabs = 252.96 psi when ratio of col. dim. (long/short) is less than 2.0.

--Wide beam shear (see "CODE") is not computed, check manually.

--After the column numbers, C = Corner, E = Exterior, I = Interior.

DI	RECT	S H	EAR	W I T	н т	R A N S F	ER O	F M O M	ΕΝΤ
			- ARO	UND		C O L U M	N – –		
COL.	ALLOW.	PATT	REACTION	SHEAR	PATT	REACTION	UNBAL.	SHEAR	SHEAR
NO.	STRESS	NO.		STRESS	NO.		MOMENT	TRANSFR	
STRES	S								
	(psi)		(kips)	(psi)		(kips)	(ft-k)	(ft-k)	(psi)
1E	252.96	4	120.9	145.51	4	120.9	245.9	91.6	246.95
21	247.27	4	267.0	207.59	4	267.0	-24.1	-9.6	213.59
3E	252.96	4	115.2	138.64	4	115.2	-211.7	-78.9	226.00

03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 13

9:08:19 PM Licensed to: ae, university park, PA

COLUMN*1	PATT	*LOCAT	TION *	TOTAL	*	COLUMN	STRIP	*	MIDDLE	STRIP
NUMBER*	NO.	*@COL	FACE*	DESIGN	*	AREA	WIDTH	*	AREA	WIDTH
			*	(ft-k)	*	(sq.in) (ft)	*	(sq.in)	(ft)
1	4		R	229.4		6.15	13.5		2.92	13.5
2	4	L		-485.8		10.22	13.0		3.24	14.0
3	4	L		-197.2		5.26	13.0		3.02	14.0

SPAN * NUMBER*	PATT NO.	*LOCATION * *FROM LEFT* (ft) *	TOTAL DESIGN (ft-k)	* * *	COLUMN AREA (sq.in)	STRIP WIDTH (ft)	* * *	MIDDLE AREA (sq.in)	STRIP WIDTH (ft)
2 3	 4 4	12.8 14.9	333.4 304.4		5.42 4.94	13.5 13.0		3.57 3.25	13.5 14.0

03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 14

9:08:19 PM Licensed to: ae, university park, PA

D E S I G N R E S U L T S ******

NOTE--The schedule given below is a guide for proper reinforcement placement and is based on reasonable engineering judgement. Unusual boundary and/or loading conditions may require modification of this schedule.

тр	*				C (ЪГ	υM	Ν		S	ΤR	Ι	P		*N	ΊI	D D	L	E S	ΤR
I F	*		LO	NG]	BAR	S		*		SH	ORT	BAR	S	*		LOI	١G	BARS	
COLUMN H-	*	-B	A R	-	LI	ΕN	GΤ	H-	*	-B	A R	-	LEN	G T H-	*	-B	A R	-	LEN	GТ
NUMBER RIGHT	*	NO	SI	ZE	LEI	FT	RI	GHT	*	NO	SI	ZE	LEFT	RIGHT	*	NO	SIZ	ZE	LEFT	
(5.)	*				(f	t)	(f	t)	*				(ft)	(ft)	*				(ft)	
(It) 																				
		1.0		_	-		0			1.0		_	1 0 0	C 05		1 -			1 0 0	
1 6.55		10	#	5	T	.08	8	.53		10	#	5	1.08	6.05		15	#	4	1.08	
2 8.05		9	#	7	8	.53	8	.53		8	#	7	6.05	6.05		16	#	4	8.30	
3		9	#	5	8	.23	1	.08		8	#	5	5.85	1.08		15	#	4	6.33	
1.00																				
				I	20	S :	IT ****	I V ****	E	* * * *	R E	I **'	N F O I	R C E I	/I E	C N	Т * *			
				-																

	*	СОЬ	υмΝ		STR	ΙP	*	ΜΙD	DLE		STR	ΙP
	*	LONG	BARS	*	SHORT	BARS	*	LONG	BARS	*	SHORT	BARS
SPAN	*	B A	R	*	B A	R	*	B A	R	*	B A	R
NUMBER LENGTH	*	NO SIZE	LENGTH	*	NO SIZE	LENGTH	*	NO SIZE	LENGTH	*	NO SIZE	
	*		(ft)	*		(ft)	*		(ft)	*		
(ft)												

Upper campus housing project Nicole Hazy Structural Advisor: Dr Hanagan

2	9	# 5	26.17	9	# 5	23.04	9	# 4	26.67	9	# 4	
22.37												
3	8	# 5	25.17	8	# 5	22.17	9	# 4	25.67	8	# 4	
21.52												

03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 15 9:08:19 PM Licensed to: ae, university park, PA

* REINF. SUMMARY* ADD'L R/F REQ'D DUE TO UNBALANCED (U.) MOMENT TRANSFER COLUMN * -----* ------*

NUMBER		* *	W/O U. REQ'D	MOMENT * - PROV'D*	MAX.U. MOMENT	*GAMMA* * -f *	FLEXURAL TRANSFER	*PATT *NO.	'* CRITICAL * SLABW -	SECTI AREA -	ON
R .	/F	*(sq.in)	(sq.in)*	(ft-k)	* *	(ft-k) *	*	(ft) (sq	.in)	
	- 1		9 06	9 20	364 0	63	228 1	Л	5 5	6 67 14	#
5	Ŧ		9.00	9.20	304.0	.05	220.4	т	5.5	0.07 14	#
7	2		13.46*	13.40	-120.7	.60	-72.4	3	5.5	1.95 0	#
5	3		8.28*	8.27	-324.4	.63	-203.6	4	5.5	5.86 12	#

NOTE: Zero transfer "CRITICAL SLABW" indicates no support dimensions given for transfer. If beam(s) are present, transfer mode may be due to beam shear and/or torsion, check manually.

* - Indicates REQ'D reinforcement is greater than PROV'D (check bar selection)

A D D I T I O N A L I N F O R M A T I O N F O R I N - S P A N C O N D I T I O N S

*	REINF. S	SUMMARY	*	TOTAL FACTORED SPAN
SPAN *	AT MII	DSPAN	*	STATIC DESIGN MOMENT
NUMBER*	REQ'D	PROV'D.	*	(W/O PARTIAL LOADS)
*	(sq.in)	(sq.in)	*	(ft-k)
2	8.99	9.18		672.6
3	8.18	8.36		617.7

03-21-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 16

9:08:19 PM Licensed to: ae, university park, PA

D E F L E C T I O N A N A L Y S I S ******

NOTES--The deflections below must be combined with those of the analysis in the perpendicular direction. Consult users manual for method of combination and limitations.

--Spans 1 and 4 are cantilevers.

- --Time-dependent deflections are in addition to those shown and must be computed as a multiplier of the dead load(DL) deflection. See "CODE" for range of multipliers.
- --Deflections due to concentrated or partialloads may be larger at the point of application than those shown at the centerline. Deflections are computed as from an average uniform loading derived from the sum of all loads applied to the span.

--Modulus of elasticity of concrete, Ec = 3834. ksi

	* *	DEAD	* *	C O L DE	U FLE	M N CTION	S T DUE	R I P TO:	* *	M I D DE	D FLE	L E CTION	S T DUE	R I P TO:	
SPAN	*	LOAD	* _												
NUMBER	*	leff.	*	DEAD	*	LIVE	*	TOTAL	*	DEAD	*	LIVE	*	TOTAL	*
	*	(in^4)	*	(in)	*	(in)	*	(in)	*	(in)	*	(in)	*	(in)	*
1		27000.		01	1	00)6	017		01	 1	00	6	017	
2		23940.		.190 .14		41 .331			.092		.063		.155		
3		24151.		.164 .10		.269		.073		.045		.119			

4 27000. -.010 -.005 -.015 -.010 -.005 -.015

TOTAL QUANTITIES

CONCRETE		46.0	cu.yd
FORMWORK		1490.	sq.ft
REINFORCEMENT	(IN THE	DIRECTION	OF ANALYSIS)
(NEGATIVE)		1157.	lbs
(POSITIVE)		1421.	lbs

SUMMARY OF QUANTITIES

CONCRETE	 .83	cu.ft/sq.ft
FORMWORK	 1.00	sq.ft/sq.ft
REINFORCEMENT**	 1.73	lbs / sq.ft

**(IN THE DIRECTION OF ANALYSIS)

* Program completed as requested *

Reinforcement Layouts

First Floor EW

First Floor NS

Second-Eighth Floors EW

Second-Eighth Floors NS

Ninth Floor EW

Ninth Floor NS

Roof EW

Roof NS

Interaction Diagram

Roof Column Schedule

Column	A _{tre} (ft ²)	P (lb)	M _{United}	Size (in x in)	Reinfor.	Ties
A-G	378	72576	241.7	26X26	12-#7	#3@ 4"
A-6.5	135	25920	355.2	26X26	12-#7	#3@ 4"
B.3-0	0	0	0	26X26	-	-
B-1	75	1 4400	2.45.7	26X26	12-#7	#3@ 4"
B-2	280	53760	245.7	26X26	12-#7	#3@14"
B-3	405	77760	244.9	26X26	12-#7	#3@ 4"
B-4	405	103680	239.5	26X26	12-#7	#3@14"
B-5	405	103680	244.9	26X26	12-#7	#3@ 4"
B.G-G.5	-	50000	355.2	26X26	12-#7	#3@14"
B.7-6	168	32256	344	26X26	12-#7	#3@14"
B.8-0	0	0	0	26X26	-	-
C.3-6.2	-	50000	355.2	26X26	12-#7	#3@ 4"
C.4-0.3	0	0	0	26X26	-	#3@ 4"
C-1	75	1 4400	344.4	26X26	12-#7	#3@ 4"
C-2	680	130560	485.8	26X26	12-#7	#3@ 4"
C-3	702	134784	485.8	26X26	12-#7	#3@ 4"
C-4	702	179712	485.8	26X26	12-#7	#3@ 4"
C-5	702	179712	485.8	26X26	12-#7	#3@ 4"
C-6	30.4	58368	350.G	26X26	12-#7	#3@ 4"
D-0.6	0	0	0	26X26	-	-
D-1	0	0	0	26X26	-	-
E-2	175.5	33696	197.2	26X26	12-#7	#3@ 4"
E-3	336	G4512	248.2	26X26	12-#7	#3@ 4"
E-4	336	860 I G	228.2	26X26	12-#7	#3@ 4"
E-5	33 6	<i>စ</i> စေ၊ ေ	268.4	26X26	12-#7	#3@14"
E-G	312	59904	197.2	26X26	12-#7	#3@14"
E.5-G.8	84	16128	355.2	26X26	12-#7	#3@ 4"
F-G.8	90	17280	355.8	26X26	12-#7	#3@14"
F-7	G7.5	12960	2.45.7	26X26	12-#7	#3@ 4"
F-8	405	77760	244.5	26X26	12-#7	#3@ 4"
F-9	405	77760	244.9	26X26	12-#7	#3@ 4"
F-10	240	46080	241.7	26X26	12-#7	#3@ 4"
F-11	285	54720	245.7	26X26	12-#7	#3@ 4"
F.2-12	0	0	0	26X26	-	-
F.5-G.8	90	17280	355.2	26X26	12-#7	#3@14"
F.G-12	0	0	0	26X26	-	-
G-7	81	15552	344.4	26×26	12-#7	#3@14"
G-8	702	134784	485.8	26%26	12-#7	#3@14"
6-9	702	134784	485.8	26826	12-#7	#3@914"
G-10	420	80640	485.8	26826	12-#7	#3@14"
G-11	280	53760	344.4	26 X 26	12-#7	#3@14"
6.1-6.8	90	17280	355.2	26826	12-#7	#3@914"
6.3-11.7	0	0	0	26326	-	-
6.6-6.8	84	16128	399.2	26326	12-#7	#3@214"
	0	0	0	26326	-	-
<u> </u>	0	20108	00001	26326	-	-
1-7	204	39160	220.4	26326	12-#7	#3@2 4" #2@3\4"
1-0	336	64912	265	26326	12-#7	#3@214"
9	336	64912	246	26326	12-#7	#3@914" #2@314"
L FIO	97.9	18720	220.4	Sexse	12-#7	#3@914"

Ninth Floor Column Schedule

A-G	378	175392	241.7	26X26	12-#7	#3@ 4"
A-6.5	135	62640	355.2	26X26	12-#7	#3@14"
B.3-0	0	0	0	26X26	-	-
B-1	75	34800	2.45.7	26X26	12-#7	#3@ 4"
B-2	280	129920	245.7	26X26	12-#7	#3@ 4"
B-3	405	187920	244.9	26X26	12-#7	#3@14"
B-4	405	213840	2 39.5	26X26	12-#7	#3@ 4"
B-5	405	213840	244.9	26X26	12-#7	#3@14"
B.G-G.5	-	100000	355.2	26X26	12-#7	#3@14"
B.7-G	168	77952	344	26X26	12-#7	#3@14"
B.8-0	0	0	0	26X26	-	-
C.3-6.2	-	100000	355.2	26X26	12-#7	#3@14"
C.4-0.3	0	0	0	26X26	-	-
G1	75	34800	344.4	26X26	12-#7	#3@ 4"
C-2	680	315520	485.8	26X26	12-#7	#3@ 4"
C-3	702	325728	485.8	26X26	12-#7	#3@ 4"
C-4	702	370656	485.8	26X26	12-#7	#3@ 4"
C-5	702	370656	485.8	26X26	12-#7	#3@ 4"
C-6	30.4	141056	350.G	26X26	12-#7	#3@ 4"
D-0.6	0	0	0	26X26	-	-
D-1	0	0	0	26X26	-	-
E-2	175.5	81432	197.2	26X26	12-#7	#3@ 4"
E-3	336	155904	2.48.2	26X26	12-#7	#3@14"
E-4	336	177408	228.2	26X26	12-#7	#3@14"
E-5	336	177408	268.4	26X26	12-#7	#3@14"
E-G	312	144768	197.2	26X26	12-#7	#3@ 4"
E.5-G.8	84	38976	355.2	26X26	12-#7	#3@14"
F-G.8	90	41760	355.8	26X26	12-#7	#3@14"
F-7	G7.5	31320	2.45.7	26X26	12-#7	#3@ 4"
F-8	405	187920	244.5	26X26	12-#7	#3@ 4"
F-9	405	187920	244.9	26X26	12-#7	#3@14"
F-10	240	111360	241.7	26X26	12-#7	#3@14"
F-11	285	132240	245.7	26X26	12-#7	#3@ 4"
F.2-12	0	0	0	26X26	-	-
F.5-G.8	90	41760	355.2	26X26	12-#7	#3@ 4"
F.G-12	0	0	0	26X26	-	-
6-7	81	37584	344.4	26X26	12-#7	#3@14"
G-8	702	325728	485.8	26X26	12-#7	#3@ 4"
6-9	702	325728	485.8	26X26	12-#7	#3@14"
G-10	420	194880	485.8	26X26	12-#7	#3@ 4"
G-11	280	129920	344.4	26X26	12-#7	#3@14"
G.1-6.8	90	41760	355.2	26X26	12-#7	#3@14"
G.3-11.7	0	0	0	26X26	-	-
6.6-6.8	84	38976	355.2	26X26	12-#7	#3@ 4"
H-11	0	0	0	26X26	-	-
H-11.5	0	0	0	26X26	-	-
1-7	204	94656	220.4	26X26	12-#7	#3@14"
1-8	336	155904	265	26X26	12-#7	#3@14"
1-9	336	155904	246	26X26	12-#7	#3@14"
+10	97.5	452.40	220.4	26X26	12-#7	#3@14"

Eight Floor Column Schedule

'	A-G	378	278208	241.7	26X26	12-#7	#3@14"
	A-6.5	135	99360	355.2	26X26	12-#7	#3@ 4"
	B.3-0	130	35360	114.9	26X26	12-#7	#3@14"
	B-1	255	104160	2.45.7	26X26	12-#7	#3@14"
	B-2	280	206080	2.45.7	26X26	12-#7	#3@14"
	B-3	405	298080	244.9	26X26	12-#7	#3@14"
	B-4	405	32 40 00	2.39.5	26X26	12-#7	#3@14"
	B-5	405	32 40 00	244.9	26X26	12-#7	#3@ 4"
	B.G-G.5	-	150000	355.2	26X26	12-#7	#3@ 4"
	B.7-6	168	123648	344	26X26	12-#7	#3@ 4"
	B.8-0	78	21216	114.9	26X26	12-#7	#3@ 4"
	C.3-6.2	-	150000	355.2	26X26	12-#7	#3@ 4"
	C. 4-0.3	ω	16320	114.9	26X26	12-#7	#3@ 4"
	G1	205	90560	344.4	26X26	12-#7	#3@ 4"
	C-2	680	500480	485.8	26X26	12-#7	#3@ 4"
	C-3	702	516672	485.8	26X26	12-#7	#3@ 4"
	C-4	702	561600	485.8	26X26	12-#7	#3@ 4"
	C-5	702	561600	485.8	26X26	12-#7	#3@ 4"
	င္ေ	30.4	223744	350.G	26X26	12-#7	#3@ 4"
	D-0.6	91	24752	114.9	26X26	12-#7	#3@14"
	D-1	130	35360	220.4	26X26	12-#7	#3@14"
	E-2	180	130392	197.2	26X26	12-#7	#3@14"
	E-3	33 6	247296	2.48.2	26X26	12-#7	#3@14"
	E-4	33 6	268800	228.2	26X26	12-#7	#3@ 4"
	E-5	33 6	268800	268.4	26X26	12-#7	#3@ 4"
	E-G	312	229632	197.2	26X26	12-#7	#3@ 4"
	E.5-G.8	84	61824	355.2	26X26	12-#7	#3@14"
	F-G.8	90	66240	355.8	26X26	12-#7	#3@14"
	F-7	G7.5	49680	245.7	26X26	12-#7	#3@14"
	F-8	405	298080	244.5	26X26	12-#7	#3@14"
	F-9	405	298080	244.9	26X26	12-#7	#3@14"
	F-10	240	176640	241.7	26X26	12-#7	#3@14"
	F-11	285	209760	2.45.7	26X26	12-#7	#3@14"
	F.2-12	210	57120	114.2	26X26	12-#7	#3@ 4"
	F.5-G.8	90	662.40	355.2	26X26	12-#7	#3@ 4"
	F.G-12	78	21216	114.2	26X26	12-#7	#3@ 4"
	G-7	81	59616	344.4	26X26	12-#7	#3@14"
	G-8	702	516672	485.8	26X26	12-#7	#3@ 4"
	6-9	702	516672	485.8	26X26	12-#7	#3@ 4"
	G-10	420	30 91 20	485.8	26X26	12-#7	#3@14"
	G-11	280	206080	344.4	26X26	12-#7	#3@14"
	G. 1-G.8	90	662.40	355.2	26X26	12-#7	#3@14"
	G.3-11.7	205	55760	114.9	26X26	12-#7	#3@14"
	G.G-G.8	84	61824	355.2	26X26	12-#7	#3@14"
	H-II	132	35904	220.4	26X26	12-#7	#3@14"
	H-11.5	84	22848	114.9	26X26	12-#7	#3@14"
	I-7	204	150144	220.4	26X26	12-#7	#3@14"
	1-8	336	247296	265	26X26	12-#7	#3@14"
	1-9	336	247296	246	26X26	12-#7	#3@14"
	10	44	84408	220.4	26X26	12-#7	#3@9 4"

Seventh Floor Column Schedule

A-G	378	381024	241.7	26X26	12-#7	#3@ 4"
A-6.5	135	136080	355.2	26X26	12-#7	#3@914"
B.3-0	130	70720	114.9	26X26	12-#7	#3@14"
B-1	255	173520	2.45.7	26X26	12-#7	#3@ 4"
B-2	280	282240	245.7	26X26	12-#7	#3@14"
B-3	405	408240	244.9	26X26	12-#7	#3@ 4"
B-4	405	434160	2.39.5	26X26	12-#7	#3@ 4"
B-5	405	434160	244.9	26X26	12-#7	#3@14"
B.G-G.5	-	200000	355.2	26X26	12-#7	#3@14"
B.7-G	168	169344	344	26X26	12-#7	#3@ 4"
B.8-0	78	42432	114.9	26X26	12-#7	#3@14"
C.3-6.2	-	200000	355.2	26X26	12-#7	#3@14"
C.4-0.3	8	32640	114.9	26X26	12-#7	#3@14"
C-1	205	146320	344.4	26X26	12-#7	#3@14"
C-2	680	685440	485.8	26X26	12-#7	#3@14"
C-3	702	707616	485.8	26X26	12-#7	#3@14"
C-4	702	752544	485.8	26X26	12-#7	#3@ 4"
C-5	702	752544	485.8	26X26	12-#7	#3@ 4"
C-6	304	306432	350.G	26X26	12-#7	#3@914"
D-0.G	91	49504	114.9	26X26	12-#7	#3@ 4"
D-I	1.30	70720	220.4	26X26	12-#7	#3@914"
E-2	180	179352	197.2	26X26	12-#7	#3@ 4"
E-3	33 6	338688	2.48.2	26X26	12-#7	#3@14"
E-4	336	360192	228.2	26X26	12-#7	#3@914"
E-5	336	360192	268.4	26X26	12-#7	#3@914"
E-G	312	31449G	197.2	26X26	12-#7	#3@914"
E.5-6.8	84	84672	355.2	26X26	12-#7	#3@914"
F-G.8	90	90720	355.8	26X26	12-#7	#3@914"
F-7	67.5	680 40	2.45.7	26X26	12-#7	#3@ 4"
F-8	405	408240	2.44.5	26X26	12-#7	#3@ 4"
F-9	405	408240	244.9	26X26	12-#7	#3@14"
F-10	240	241920	241.7	26X26	12-#7	#3@ 4"
F-11	285	287280	2.45.7	26X26	12-#7	#3@14"
F.2-12	210	114240	114.2	26X26	12-#7	#3@ 4"
F.5-G.8	90	90720	355.2	26X26	12-#7	#3@14"
F.G-12	78	42432	114.2	26X26	12-#7	#3@ 4"
6-7	81	81648	344.4	26X26	12-#7	#3@ 4"
G-8	702	707616	485.8	26X26	12-#7	#3@ 4"
6-9	702	707616	485.8	26X26	12-#7	#3@ 4"
G-10	420	42 33 60	485.8	26X26	12-#7	#3@14"
G-11	280	282240	344.4	26X26	12-#7	#3@14"
G. 1 - G. 8	90	90720	355.2	26X26	12-#7	#3@14"
G.3-11.7	205	111520	114.9	26X26	12-#7	#3@14"
G.G-G.8	84	84672	355.2	26X26	12-#7	#3@14"
H-11	1 32	71808	220.4	26X26	12-#7	#3@ 4"
H-11.5	84	45696	114.9	26X26	12-#7	#3@14"
I-7	20.4	205632	220.4	26X26	12-#7	#3@14"
1-8	336	338688	265	26X26	12-#7	#3@14"
1-9	336	338688	246	26X26	12-#7	#3@14"
10	144	123576	220.4	26X26	12-#7	#3@ 4"

Sixth Floor Column Schedule

A-G	378	48 38 40	241.7	26X26	12-#7	#3@ 4"
A-6.5	135	172800	355.2	26X26	12-#7	#3@9 4"
B.3-0	130	106080	114.9	26X26	12-#7	#3@14"
B-1	255	242880	2.45.7	26X26	12-#7	#3@914"
B-2	280	358400	2.45.7	26X26	12-#7	#3@914"
B-3	405	518400	244.9	26X26	12-#7	#3@ 4"
B-4	405	544320	2 39.5	26X26	12-#7	#3@ 4"
B-5	405	544320	244.9	26X26	12-#7	#3@ 4"
B.G-G.5	-	250000	355.2	26X26	12-#7	#3@14"
B.7-G	168	215040	344	26X26	12-#7	#3@ 4"
B.8-0	78	63648	114.9	26X26	12-#7	#3@ 4"
C.3-6.2	-	250000	355.2	26X26	12-#7	#3@ 4"
C.4-0.3	60	48960	114.9	26X26	12-#7	#3@ 4"
C-1	205	202080	344.4	26X26	12-#7	#3@ 4"
C-2	680	870400	485.8	26X26	12-#7	#3@ 4"
C-3	702	898560	485.8	26X26	12-#7	#3@ 4"
C-4	702	943488	485.8	26X26	12-#7	#3@9 4"
C-5	702	943488	485.8	26X26	12-#7	#3@914"
C-6	30.4	389120	350.G	26X26	12-#7	#3@914"
D-0.6	91	74256	114.9	26X26	12-#7	#3@914"
D-1	130	106080	220.4	26X26	12-#7	#3@914"
E-2	180	228312	197.2	26X26	12-#7	#3@914"
E-3	336	430080	2.48.2	26X26	12-#7	#3@14"
E-4	336	451584	228.2	26X26	12-#7	#3@914"
E-5	336	451584	268.4	26X26	12-#7	#3@14"
E-G	312	399360	197.2	26X26	12-#7	#3@914"
E.5-6.8	84	107520	355.2	26X26	12-#7	#3@14"
F-G.8	90	115200	355.8	26X26	12-#7	#3@914"
F-7	G7.5	86400	2.45.7	26X26	12-#7	#3@ 4"
F-8	405	518400	244.5	26X26	12-#7	#3@914"
F-9	405	518400	244.9	26X26	12-#7	#3@ 4"
F-10	240	30 7 2 0 0	241.7	26X26	12-#7	#3@914"
F-11	285	364800	2.45.7	26X26	12-#7	#3@ 4"
F.2-12	210	171360	114.2	26X26	12-#7	#3@914"
F.5-6.8	90	115200	355.2	26X26	12-#7	#3@914"
F.G-12	78	63648	114.2	26X26	12-#7	#3@914"
6-7	81	103680	344.4	26X26	12-#7	#3@914"
G-8	702	898560	485.8	26X26	12-#7	#3@14"
6-9	702	898560	485.8	26X26	12-#7	#3@914"
G-10	420	537600	485.8	26X26	12-#7	#3@ 4"
G-11	280	358400	344.4	26X26	12-#7	#3@914"
G.1-6.8	90	115200	355.2	26X26	12-#7	#3@914"
G.3-11.7	205	167280	114.9	26X26	12-#7	#3@14"
G.G-G.8	84	107520	355.2	26X26	12-#7	#3@ 4"
H-11	1.32	107712	220.4	26X26	12-#7	#3@14"
H-11.5	84	68544	114.9	26X26	12-#7	#3@ 4"
1-7	204	261120	220.4	26X26	12-#7	#3@14"
1-8	336	430080	265	26X26	12-#7	#3@ 4"
1-9	336	430080	246	26X26	12-#7	#3@14"
10	144	162744	220.4	26X26	12-#7	#3@14"

Fifth Floor Column Schedule

A-G	378	586656	241.7	26X26	12-#7	#3@ 4"
A-G.5	1 35	20 95 20	355.2	26X26	12-#7	#3@ 4"
B.3-0	130	141440	114.9	26X26	12-#7	#3@ 4"
B-I	255	312240	2.45.7	26X26	12-#7	#3@ 4"
B-2	280	434560	2.45.7	26X26	12-#7	#3@ 4"
B-3	405	628560	244.9	26X26	12-#7	#3@ 4"
B-4	405	65 4480	2 39.5	26X26	12-#7	#3@ 4"
B-5	405	65 4 4 8 0	244.9	26X26	12-#7	#3@ 4"
B.G-G.5	-	300000	355.2	26X26	12-#7	#3@ 4"
B.7-6	168	260736	344	26X26	12-#7	#3@ 4"
B.8-0	78	848G4	114.9	26X26	12-#7	#3@ 4"
C.3-6.2	-	300000	355.2	26X26	12-#7	#3@ 4"
C.4-0.3	ω	652 <i>80</i>	114.9	26X26	12-#7	#3@ 4"
61	205	25 78 40	344.4	26X26	12-#7	#3@ 4"
C-2	680	1055360	485.8	26X26	12-#11	#4@22"
C-3	702	1089504	485.8	26X26	12-#11	#4@22"
C-4	702	1134432	485.8	26X26	2-#	#4@22"
C-5	702	1134432	485.8	26X26	12-#11	#4@22"
C-6	304	471808	350.G	26X26	12-#7	#3@ 4"
D-0.6	91	99008	114.9	26X26	12-#7	#3@914"
다	130	141440	220.4	26X26	12-#7	#3@ 4"
E-2	180	277272	197.2	26X26	12-#7	#3@ 4"
E-3	336	521472	2.48.2	26X26	12-#7	#3@ 4"
E-4	33G	54297G	228.2	26X26	12-#7	#3@14"
E-5	33G	54297G	268.4	26X26	12-#7	#3@ 4"
E-G	312	48 42 2 4	197.2	26X26	12-#7	#3@ 4"
E.5-G.8	84	130368	355.2	26X26	12-#7	#3@ 4"
F-G.8	90	139680	355.8	26X26	12-#7	#3@ 4"
F-7	G7.5	10 47 60	2.45.7	26X26	12-#7	#3@914"
F-8	405	628560	244.5	26X26	12-#7	#3@ 4"
F-9	405	628560	244.9	26X26	12-#7	#3@ 4"
F-10	240	372480	241.7	26X26	12-#7	#3@914"
F-11	285	442320	2.45.7	26X26	12-#7	#3@ 4"
F.2-12	210	228480	114.2	26X26	12-#7	#3@ 4"
F.5-G.8	90	139680	355.2	26X26	12-#7	#3@914"
F.G-12	78	84864	114.2	26X26	12-#7	#3@14"
6-7	81	125712	344.4	26X26	12-#7	#3@14"
G-8	702	108 950 4	485.8	26X26	12-#11	#4@22"
6-9	702	108 950 4	485.8	26X26	12-#11	#4@22"
G-10	420	651840	485.8	26X26	12-#7	#3@14"
G-11	280	434560	344.4	26X26	12-#7	#3@14"
G.1-6.8	90	139680	355.2	26X26	12-#7	#3@14"
G.3-11.7	205	22 30 40	114.9	26X26	12-#7	#3@14"
G.G-G.8	84	130368	355.2	26X26	12-#7	#3@14"
H-II	132	143616	220.4	26X26	12-#7	#3@ 4"
H-11.5	84	91392	114.9	26X26	12-#7	#3@14"
1-7	204	31 6608	220.4	26X26	12-#7	#3@14"
1-8	336	521472	265	26X26	12-#7	#3@14"
1-9	336	521472	246	26X26	12-#7	#3@14"
10	144	201912	220.4	26X26	12-#7	#3@14"

Fourth Floor Column Schedule

A-G	378	689472	241.7	26X26	12-#7	#3@ 4"
A-6.5	135	246240	355.2	26X26	12-#7	#3@ 4"
B.3-0	130	176800	114.9	26X26	12-#7	#3@ 4"
B-1	255	381600	2.45.7	26X26	12-#7	#3@ 4"
B-2	280	510720	2.45.7	26X26	12-#7	#3@ 4"
B-3	405	738720	244.9	26X26	12-#7	#3@ 4"
B-4	405	764640	2.39.5	26X26	12-#7	#3@ 4"
B-5	405	764640	244.9	26X26	12-#7	#3@ 4"
B.G-G.5	-	350000	355.2	26X26	12-#7	#3@ 4"
B.7-6	168	306432	344	26X26	12-#7	#3@ 4"
B.8-0	78	106080	114.9	26X26	12-#7	#3@ 4"
C.3-6.2	-	350000	355.2	26X26	12-#7	#3@ 4"
C.4-0.3	8	81600	114.9	26X26	12-#7	#3@ 4"
61	205	31 3600	344.4	26X26	12-#7	#3@ 4"
C-2	680	1240320	485.8	26X26	12-#11	#4@22"
C-3	702	1280448	485.8	26X26	12-#11	#4@22"
C-4	702	1325376	485.8	26X26	12-#11	#4@22"
C-5	702	1325376	485.8	26X26	12-#11	#4@22"
C-6	30.4	55449G	350.G	26X26	12-#7	#3@ 4"
D-0.6	91	123760	114.9	26X26	12-#7	#3@ 4"
D-1	1 30	176800	220.4	26X26	12-#7	#3@ 4"
E-2	180	32 62 32	197.2	26X26	12-#7	#3@ 4"
E-3	336	612864	2.48.2	26X26	12-#7	#3@ 4"
E-4	336	634368	228.2	26X26	12-#7	#3@ 4"
E-5	33 6	634368	268.4	26X26	12-#7	#3@ 4"
E-G	312	569088	197.2	26X26	12-#7	#3@ 4"
E.5-6.8	84	153216	355.2	26X26	12-#7	#3@ 4"
F-G.8	90	164160	355.8	26X26	12-#7	#3@ 4"
F-7	G7.5	123120	2.45.7	26X26	12-#7	#3@ 4"
F-8	405	738720	244.5	26X26	12-#7	#3@ 4"
F-9	405	738720	244.9	26X26	12-#7	#3@ 4"
F-10	240	437760	241.7	26X26	12-#7	#3@ 4"
F-11	285	519840	245.7	26 X 26	12-#7	#3@ 4"
F.2-12	210	285600	114.2	26X26	12-#7	#3@ 4"
F.5-G.8	90	164160	355.2	26X26	12-#7	#3@ 4"
F.G-12	78	106080	114.2	26X26	12-#7	#3@ 4"
G-7	81	147744	344.4	26X26	12-#7	#3@ 4"
G-8	702	1280448	485.8	26 X 26	12-#11	#4@22"
6-9	702	1280448	485.8	26X26	12-#11	#4@22"
G-10	420	766080	485.8	26X26	12-#7	#3@ 4"
G-11	280	510720	344.4	26X26	12-#7	#3@ 4"
G. 1-G.8	90	164160	355.2	26X26	12-#7	#3@ 4"
G.3-11.7	205	278800	114.9	26X26	12-#7	#3@14"
G.G-G.8	84	153216	355.2	26X26	12-#7	#3@ 4"
H-11	132	179520	220.4	26X26	12-#7	#3@14"
H-11.5	84	114240	114.9	26X26	12-#7	#3@ 4"
1-7	20.4	372096	220.4	26X26	12-#7	#3@14"
1-8	336	612864	265	26X26	12-#7	#3@14"
1-9	33G	GI 28 G4	24G	26X26	12-#7	#3@ 4"
10	144	241080	220.4	26X26	12-#7	#3@ 4"

Third Floor Column Schedule

A-G	378	792288	241.7	26X26	12-#7	#3@14"
A-G.5	135	282960	355.2	26X26	12-#7	#3@ 4"
B.3-0	130	212160	114.9	26X26	12-#7	#3@ 4"
B-1	255	450960	2.45.7	26X26	12-#7	#3@914"
B-2	280	586880	2.45.7	26X26	12-#7	#3@14"
B-3	405	848880	244.9	26X26	12-#7	#3@ 4"
B-4	405	874800	2.39.5	26X26	12-#7	#3@ 4"
B-5	405	874800	244.9	26X26	12-#7	#3@914"
B.G-G.5	-	400000	355.2	26X26	12-#7	#3@ 4"
B.7-6	168	352128	344	26X26	12-#7	#3@ 4"
B.8-0	78	127296	114.9	26X26	12-#7	#3@ 4"
C.3-G.2	-	400000	355.2	26X26	12-#7	#3@ 4"
C. 4-0.3	8	97920	114.9	26X26	12-#7	#3@ 4"
C-1	205	369360	344.4	26X26	12-#7	#3@ 4"
C-2	680	1425280	485.8	26X26	12-#11	#4@22"
C-3	702	1471392	485.8	26X26	12-#11	#4@22"
C-4	702	1516320	485.8	26X26	12-#11	#4@22"
C-5	702	1516320	485.8	26X26	12-#11	#4@22"
C-6	30.4	637184	350.G	26X26	12-#7	#3@ 4"
D-0.6	91	148512	114.9	26X26	12-#7	#3@ 4"
D-1	130	212160	220.4	26X26	12-#7	#3@ 4"
E-2	180	375192	197.2	26X26	12-#7	#3@ 4"
E-3	336	70 42 5 6	2.48.2	26X26	12-#7	#3@14"
E-4	336	725760	228.2	26X26	12-#7	#3@ 4"
E-5	336	725760	268.4	26X26	12-#7	#3@ 4"
E-G	312	65.3952	197.2	26X26	12-#7	#3@914"
E.5-6.8	84	176064	355.2	26X26	12-#7	#3@14"
F-G.8	90	188640	355.8	26X26	12-#7	#3@ 4"
F-7	G7.5	141480	2.45.7	26X26	12-#7	#3@ 4"
F-8	405	848880	244.5	26X26	12-#7	#3@ 4"
F-9	405	848880	244.9	26X26	12-#7	#3@ 4"
F-10	240	50 30 40	241.7	26X26	12-#7	#3@ 4"
F-11	285	597360	2.45.7	26X26	12-#7	#3@ 4"
F.2-12	210	342720	114.2	26X26	12-#7	#3@ 4"
F.5-G.8	90	188640	355.2	26X26	12-#7	#3@ 4"
F.G-12	78	127296	114.2	26X26	12-#7	#3@ 4"
G-7	81	169776	344.4	26X26	12-#7	#3@14"
G-8	702	1471392	485.8	26X26	12-#11	#4@22"
6-9	702	1471392	485.8	26X26	12-#11	#4@22"
G-10	420	880320	485.8	26X26	12-#7	#3@ 4"
G-11	280	586880	344.4	26X26	12-#7	#3@ 4"
G. 1-6.8	90	188640	355.2	26X26	12-#7	#3@ 4"
G.3-11.7	205	334560	114.9	26X26	12-#7	#3@ 4"
G. G-G. 8	84	176064	355.2	26X26	12-#7	#3@ 4"
H-II	132	215424	220.4	26X26	12-#7	#3@14"
H-11.5	84	137088	114.9	26X26	12-#7	#3@14"
1-7	20.4	427584	220.4	26X26	12-#7	#3@ 4"
1-8	33G	70 42 5 6	265	26X26	12-#7	#3@ 4"
1-9	33G	70 42 5 6	24G	26X26	12-#7	#3@14"
10	144	2802.48	220.4	26X26	12-#7	#3@ 4"

Second Floor Column Schedule

A-G	378	895104	241.7	26X26	12-#7	#3@14"
A-6.5	135	319680	355.2	26X26	12-#7	#3@ 4"
B.3-0	130	247520	114.9	26X26	12-#7	#3@ 4"
B-1	255	520320	245.7	26X26	12-#7	#3@ 4"
B-2	280	663040	2.45.7	26X26	12-#7	#3@ 4"
B-3	405	95 90 40	244.9	26X26	12-#7	#3@ 4"
B-4	405	98 49 60	2 39.5	26X26	12-#7	#3@ 4"
B-5	405	98 49 60	244.9	26X26	12-#7	#3@914"
B.G-G.5	-	450000	355.2	26X26	12-#7	#3@ 4"
B.7-6	168	397824	344	26X26	12-#7	#3@ 4"
B.8-0	78	148512	114.9	26X26	12-#7	#3@914"
C. 3-6. 2	-	450000	355.2	26X26	12-#7	#3@914"
C.4-0.3	8	11 42 40	114.9	26X26	12-#7	#3@ 4"
61	205	425120	344.4	26X26	12-#7	#3@ 4"
C-2	680	1610240	485.8	26X26	IG-#II	#4@22"
C-3	702	1662336	485.8	26X26	IG-#11	#4@22"
C-4	702	1707264	485.8	26X26	IG-#11	#4@22"
C-5	702	1707264	485.8	26X26	IG-#11	#4@22"
C-6	30.4	719672	350.G	26X26	12-#7	#3@ 4"
D-0.G	91	173264	114.9	26X26	12-#7	#3@ 4"
다	130	247520	220.4	26X26	12-#7	#3@ 4"
E-2	180	424152	197.2	26X26	12-#7	#3@ 4"
E-3	33 6	795648	2.48.2	26X26	12-#7	#3@ 4"
E-4	33 6	817152	228.2	26X26	12-#7	#3@ 4"
E-5	33 6	817152	268.4	26X26	12-#7	#3@ 4"
E-G	312	73881G	197.2	26X26	12-#7	#3@14"
E.5-G.8	84	198912	355.2	26X26	12-#7	#3@14"
F-G.8	90	213120	355.8	26X26	12-#7	#3@14"
F-7	G7.5	159840	245.7	26X26	12-#7	#3@ 4"
F-8	405	95 90 40	244.5	26X26	12-#7	#3@14"
F-9	405	95 90 40	244.9	26X26	12-#7	#3@ 4"
F-10	240	568320	241.7	26X26	12-#7	#3@914"
F-11	285	G7 48 80	2.45.7	26X26	12-#7	#3@914"
F.2-12	210	399840	114.2	26X26	12-#7	#3@ 4"
F.5-6.8	90	213120	355.2	26X26	12-#7	#3@914"
F.G-12	78	148512	114.2	26X26	12-#7	#3@914"
G-7	81	191808	344.4	26X26	12-#7	#3@ 4"
G-8	702	1662336	485.8	26X26	IG-#II	#4@22"
6-9	702	1662336	485.8	26X26	IG-#II	#4@22"
G-10	420	994560	485.8	26X26	12-#7	#3@14"
G-11	280	663040	344.4	26X26	12-#7	#3@ 4"
G. 1-6.8	90	213120	355.2	26X26	12-#7	#3@ 4"
G.3-11.7	205	390320	114.9	26X26	12-#7	#3@14"
G.G-G.8	84	198912	355.2	26X26	12-#7	#3@14"
H-11	132	251328	220.4	26X26	12-#7	#3@ 4"
H-11.5	84	159936	114.9	26X26	12-#7	#3@ 4"
1-7	20.4	48 30 72	220.4	26X26	12-#7	#3@14"
1-8	336	795648	265	26X26	12-#7	#3@ 4"
1-9	336	795648	246	26X26	12-#7	#3@ 4"
+10	44	319416	220.4	26X26	12-#7	#3@914"

First Floor Column Schedule

A-G	378	997920	241.7	26X26	12-#7	#3@ 4"
A-6.5	135	35 6400	355.2	26X26	12-#7	#3@ 4"
B.3-0	130	282880	114.9	26X26	12-#7	#3@ 4"
B-1	255	589680	2.45.7	26X26	12-#7	#3@ 4"
B-2	280	739200	2.45.7	26X26	12-#7	#3@ 4"
B-3	405	1069200	244.9	26X26	12-#7	#3@ 4"
B-4	405	1095120	2 39.5	26X26	12-#7	#3@ 4"
B-5	405	1095120	244.9	26X26	12-#7	#3@ 4"
B.G-G.5	-	500000	355.2	26X26	12-#7	#3@ 4"
B.7-G	168	443520	344	26X26	12-#7	#3@ 4"
B.8-0	78	169728	114.9	26X26	12-#7	#3@ 4"
C.3-6.2	-	500000	355.2	26X26	12-#7	#3@ 4"
C.4-0.3	8	130560	114.9	26X26	12-#7	#3@ 4"
C-1	205	480880	344.4	26X26	12-#7	#3@ 4"
C-2	680	1795200	485.8	26X26	IG-#11	#4@22"
C-3	702	1853280	485.8	26X26	IG-#11	#4@22"
C-4	702	1898208	485.8	26X26	IG-#11	#4@22"
C-5	702	1898208	485.8	26X26	IG-#11	#4@22"
C-6	30.4	80 25 60	350.G	26X26	12-#7	#3@ 4"
D-0.6	91	198016	114.9	26X26	12-#7	#3@ 4"
D-1	130	282880	220.4	26X26	12-#7	#3@ 4"
E-2	180	473112	197.2	26X26	12-#7	#3@ 4"
E-3	33 6	88 70 40	248.2	26X26	12-#7	#3@ 4"
E-4	33 6	908544	228.2	26X26	12-#7	#3@ 4"
E-5	33 6	908544	268.4	26X26	12-#7	#3@ 4"
E-G	312	823680	197.2	26X26	12-#7	#3@ 4"
E.5-G.8	84	221760	355.2	26X26	12-#7	#3@ 4"
F-G.8	90	237600	355.8	26X26	12-#7	#3@ 4"
F-7	G7.5	178200	2.45.7	26X26	12-#7	#3@ 4"
F-8	405	1069200	244.5	26X26	12-#7	#3@ 4"
F-9	405	1069200	244.9	26X26	12-#7	#3@ 4"
F-10	240	633600	241.7	26X26	12-#7	#3@ 4"
F-11	285	752400	2.45.7	26X26	12-#7	#3@ 4"
F.2-12	210	45 69 60	114.2	26X26	12-#7	#3@ 4"
F.5-G.8	90	237600	355.2	26X26	12-#7	#3@ 4"
F.G-12	78	169728	114.2	26X26	12-#7	#3@ 4"
6-7	81	213840	344.4	26X26	12-#7	#3@ 4"
6-8	702	1853280	485.8	26X26	IG-#11	#4@22"
6-9	702	1853280	485.8	26X26	IG-#II	#4@22"
G-10	420	1108800	485.8	26X26	12-#7	#3@ 4"
G-11	280	739200	344.4	26X26	12-#7	#3@ 4"
G.1-6.8	90	237600	355.2	26X26	12-#7	#3@ 4"
G.3-11.7	205	446080	114.9	26X26	12-#7	#3@ 4"
G.G-G.8	84	221760	355.2	26X26	12-#7	#3@14"
H-11	132	287232	220.4	26X26	12-#7	#3@ 4"
H-11.5	84	182784	114.9	26X26	12-#7	#3@ 4"
1-7	20.4	538560	220.4	26X26	12-#7	#3@14"
1-8	336	88 70 40	265	26X26	12-#7	#3@ 4"
1-9	336	88 70 40	246	26X26	12-#7	#3@ 4"
+10	144	358584	220.4	26X26	12-#7	#3@ 4"

Page 100

UPPER Campus Housing Project Nicole Hazy Structural Advisor: Dr Hanagan

Beam Design

\$ Mn = \$ ASFy(d-9/2) = 0.9(0.32112) 00Ksi) 12.5"-1.24"/2) = 4054.4"K OK

Upper campus Housing Project Nicole Hazy Structural Advisor: Dr Hanagan

Shear Wall Type A

Shear Wall Type B

Thermal Gradient Calculations

U-Values	Source		
Maximum Allowable U-Value	ASHRAE std. 90.1-2004	0.064	
Wall Construction U-Value	Carrier's Hourly Analysis	0.059	

Temperatures (F)			
Winter Outdoor Temp	7		
Summer Outdoor Temp	වර		
Winter Indoor Temp	70		
Summer Indoor Temp	75		

Q-Value	(Outdoor-Indoor)/R _{Tobel}		
Q-Winter (Man. Wall)	3.555		
Q-Summer (Man. Wall)	0.621		

Dew Point Tempestures (F)	Based on:		
Winter	75F, 50%RH	55	
Summ <i>e</i> r	70F, 50%RH	51	

Materal	Thickness (in)	R-Value
Outside Air SR	0.00	0.33
4" Brick Veneer	4.00	0.43
Air Space	1.00	0.91
Board Insulation	2.00	13.89
Vapor Barrior	0.01	0.00
Air Spacae	3.50	0.91
GWB	0.63	0.56
Inside Air	0.00	0.69
Totals	11.14	17.72

ΔT			
Winter	Summer		
1.184	0.207		
1.539	0.269		
3.235	0.565		
49.381	8.622		
0.000	0.000		
3.235	0.565		
1.991	0.348		
2.435	0.425		

Temp(F)			
Wnter	Summer		
7	<i>5</i> 6		
8.18	<i>8</i> 5.79		
9.72	ව 5.52		
12.96	84.96		
62.34	76.34		
62.34	76.34		
65.57	75.77		
67.56	75.43		
70.00	75.00		

ASHRAE std. 90.1-2004

			1		, , ,		
	Nonresidential		Residential		Semiheated		
						Semiletted	
	Assembly	Insulation Min.	Assembly	Insulation Min.	Assembly	Insulation Min.	
Opaque Elements	Maximum	R-Value	Maximum	R-Value	Maximum	R-Value	
Roofs							
Insulation Entirely above Deck	U-0.063	R-15.0 ci	U-0.063	R-15.0 ci	U-0.173	R-5.0 ci	
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-0.097	R-10.0	
Attic and Other	U-0.034	R-30.0	U-0.027	R-38.0	U-0.053	R-19.0	
Walls, Above Grade							
Mass	U-0.123	R-7.6 ci	U-0.090	R-11.4 ci	U-0.580	NR	
Metal Building	U-0.113	R-13.0	U-0.057	R-13.0 + R-13.0	U-0.123	R-11.0	
Steel Framed	U-0.084	R-13.0 + R-3.8 ci	U-0.064	R-13.0 + R-7.5 ci	U-0.124	R-13.0	
Wood Framed and Other	U-0.089	R-13.0	U-0.089	R-13.0	U-0.089	R-13.0	
Wall, Below Grade							
Below Grade Wall	C-1.140	NR	C-1.140	NR	C-1.140	NR	
Floors							
Mass	U-0.087	R-8.3 ci	U-0.074	R-10.4 ci	U-0.322	NR	
Steel Joist	U-0.052	R-19.0	U-0.038	R-30.0	U-0.069	R-13.0	
Wood Framed and Other	U-0.033	R-30.0	U-0.033	R-30.0	U-0.066	R-13.0	
Slab-On-Grade Floors							
Unheated	F-0.730	NR	F-0.730	NR	F-0.730	NR	
Heated	F-0 840	R-10 for 36 in	F-0.840	R-10 for 36 in.	F-1.020	R-7.5 for 12 in.	
Opaque Doors		11 10 101 00 111					
Swinging	U-0 700		U-0 700		U-0 700		
Non-Swinging	U-1 450		U-0 500		U-1 450		
i ton 5 milling	Assembly	Assembly Max	Assembly	Assembly Max	Assembly	Assembly Max	
	Max II	SHGC (All	Max II	SHGC (All	Max II	SHGC (All	
	(Fixed/	Orientations/	(Fixed/	Orientations/	(Fixed/	Orientations/	
Fenestration	(Inca)	North-Oriented)	Operable)	North-Oriented)	Onerable)	North-Oriented)	
Vertical Glazing % of Wall	operable)	(orthe Ortented)	operable	intericuty	operable)	interieureureureur	
0-10.0%	fixed-0.57	SHOCall-0.49	fixed 0.57	SHOC all 0.49	fixed-1.22	SHGCall-NR	
0-10.070	Uoper-0.67	SHGC north-0.49	Uoper-0.67	SHGC north-0.49	Uoper 1.27	SHGCnorthNR	
10.1-20.0%	fixed ^{-0.57}	SHGCall-0.39	Ufixed 0.57	SHGCall-0.39	fixed-1.22	SHGCall-NR	
	Oper-0.67	SHGC north 0.49	Ooper-0.67	SHGCnorth-0.49	^U oper ^{-1.27}	SHGCnorthNR	
20.1-30.0%	fixed 0.57	shoc all 0.39	fixed 0.57	shocall-0.39	fixed-1.22	SHGC all-NR	
	Ooper ^{-0.67}	shoc north 0.49	oper 0.67	SHGC north -0.49	oper ^{-1.27}	SHGCnorth	
30.1-40.0%	fixed ^{-0.37}	shocall-0.39	⁰ fixed ^{-0.57}	SHGCall ^{-0.39}	⁰ fixed ^{-1.22}	shocall-NR	
	oper ^{-0.67}	SHOC north	oper ⁻⁰⁶⁷	SHGC north	oper ^{1.27}	SHGC north NR	
40.1-50.0%	fixed	andallozo	fixed	all o to	fixed	all	
	oper	north	oper	north	oper	north	
Skylight with Curb, Glass,% of Roof	U m-117	SHOC 11-0-89	U m-1.17	SHOC 11-0.49	U 11-L 98	SHGC 11-NR	
0-2.0%	all	all SHGC 11-0 39	all	all SHOC 11-0 19	all	all SHGC 11-NR	
2.1-5.0%	all	all	all	all	all	all	
Skylight with Curb, Plastic,% of Roo	1	SHER	1	SUCC 0.77	11	SHOCNR	
0-2.0%	all unit 10	all SHOC u-0.62	all	all SHOC 11-0.67	all Unit 90	all SHGC 11-NR	
2.1-5.0%	[all	alloon	all	all	all	all	
Skylight without Curb, All,% of Roof	1	NHOC	11	SHOC and P	11	SECCNR	
0-2.0%	all	all	all	all	all	all	
2.1-5.0%	all	all	all	all	all	all	

TABLE 5.5-5 Building Envelope Requirements For Climate Zone 5 (A,B,C)

Summer Gradient

SUMMER WALL HEAT TRANSFER DIAGRAM

